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Lorentz and the hyperbola

Or: why didn’t you say that right away?

Why this?

I saw quite a number of introductions to special relativity while trying to understand the subject but
never found it explained as I now do to myself. I would think it turns the subject into high school
stuff, not even surely of the final year.

Linge River, Netherlands, November 2016,

Introductory overview

In special relativity theory it got accepted that if M and M´ move relative to each other, their meters
and seconds will deform if expressed in each other. This implies you have M-meters, M-seconds, M
´-meters  and  M´-seconds.  M and  M´  will  have  different  meter-second  grids,  and  the  Lorentz-
transformation translates those grids in each other.
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The standard graph to first illustrate this is the one dimension relativistic space-time diagram. All
movements are uniform: there is no force (like gravity or electromagnetism) acting upon any mover.
“One dimension” means we only move along one line, either in the negative or in the positive
direction,  that  is  leftward  or  rightward  along the  x (distance)  line  in  Graph 1.  The  successive
moments in time of this process are stacked vertical upward along the t (time) line.

Time measurements by M are on vertical axis, distance measurements by M on the horizontal axis,
we, the onlookers, made M’s grid of space-time measurements the orthogonal grid. We consider
movers and two light pulses that come together at (x,t)=(0,0) and then start moving away from each
other from there. But there is a past as well. That is the lower half of the graph where t is negative.
In that past all this moving stuff approaches the origin to come together and pass each other at its
different speeds exactly at (x,t)=(0,0). 

This must have been done in the infinite past (- ∞, down in the graph) by absolute master shooters: first they launched,
from the far left to the right over the x-axis, M, then, after exactly the appropriate time, they launch M´ such that M´
once out of acceleration and in uniform motion, has a speed relative to M of v exactly. Then, after again some waiting,
they shoot two light pulses, one from the far left after M and M´ to catch up with them, and one from the far right to go
for a frontal meeting, all such that after the time would have lapsed from - ∞ to 0 all four are exactly (infinitesimal!)
together in (x,t)=(0,0). We should appreciate their incredible performance : it makes our space-time diagram analysis
easy and instructive.
 
As usual I normalize the time and distance scales to set light speed c = 1. This sets in the graph the
line-length of a light-year equal to the line length of a year, or for instance, in micro-physics, the
length of a light-nanosecond (=30cm) equal to a nanosecond. Years or nanoseconds, that is a matter
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of zooming the graph in and out, but that will not change the slope of the linear time path of the
light pulses, that is, the series of events (x,t) of distances and clockpositions where the light pulse
will be at. These lines are called the worldlines of the two light pulses. They form the red cross in
Graph 1. Once the graph is normalized, one light worldline slopes 45o  (for the left-to right-pulse,
moving in  same the  direction  as  M and M’).  The other  light  worldline,  the  one  for  the  pulse
traveling in the opposite direction of M and M’ and of the other light pulse, slopes 45o to the left up.

More about normalization in section 3

Another way to state this: we onlookers chose (“set”) M in Graph 1 as the “zero-mover”. The speed
of any other uniform mover M´ will be drawn in space-time diagrams graphs like Graph 1 as 

x=vt   (2)

where (x,t) the speed  v at which M´ moves from M (v is negative if M´ moves from M in M’s
negative direction).  Thus a mover speeding away from M at the origin O with v=50% of light speed
will, in M’s graph, move along a worldline of x=0.5t. And x is defined as the distance of M´ from
M. In the graph, M´ ‘s path in time is OST. M’s worldline is, by definition, OQP, where at all times
t: x=0. Speed v can be read in Graph 1 as 

v= 
d (PS)

d (S
~
P)

where  d(PS) is  the notation for “distance between P and S”,  so if  P is  (x,t)=(0,b)  then  ~
P is

(x,t)=(vb,0). The maximum rearward speed is -c = -1 (lightspeed), the maximum forward speed is c
= 1 , so for moving hardware speed is limited to -1<v<1.
The points  of  the  graph  are  events  of  the  type:  “M’s  clock  reads  t”,  or  as  we shall  phrase  it
everywhere:  mover  M’s  clockposition  is  t.  To  distinguish  between  the  positions  t of  different
movers’ clocks, we shall use t for M and t´ for M´. So in our example, we have two movers, thus
two t-scales. There are no t-scales apart from those of movers, since there is no absolute time. The
universe has no time, only hardware in the universe has, and movers at different speeds experience
the clockpositions on each other’s scales as different from their own. The Lorentz equations make
sure we can convert those scales into each other (section 10).
Every point in the Graph 1 could be an event of the type “M’s clockposition is t”. For that to be so,
some actual mover’s specific value of speed v should be such that his worldline passes through that
point. In Graph 1, on the vertical axis are all  clockposition events of M, and on the line x=vt you
find all clockposition events of M´.

When starting to study the geometrics of special relativity last year, it soon dawned on me that I was not sure about what exactly is a
“clock”. None of my introductory texts was very explicit about it. I saw a lot illustrations sporting round things that should remind
me of an analog revolving display of what looked most like the type of clock that works on the balance wheel with a spring. After
some days of halting at the matter I found that any regular process in nature can be used as a clock: the seasons clock the year, the
revolving sun clocks the day. In Antiquity, Roman prostitutes used a slightly leaking pottery bowl floating on water. It gave a discrete
sound when sinking to the bottom of its vessel. At the same time came the sand glass, and it considerably improved through the ages.
Then man’s ambitions to progress yielded the pendulum-clock, the balance wheel with spring, cesium radiation counters. Did we
really improve our “clocks”? This is answered by comparatively testing clock types: you set a sizable series of each type of clock to
zero at some moment, after a while read them at some other moment, then check the deviations within the group of sand glasses, the
group of pendulums, the group of cesium counters. Your conclusion will have certainty only by a statistical margin, but in this case
be sure your ranking will be beyond your reasonable doubt, and you will rank top the cesium counter, even proving that two earth
days always slightly differ. 
A clock,  a regular iterative process that is, is  a tool used by most creatures  on earth that maintained themselves in evolution,
including trees, wasps and human beings.  Apart from their biological clock, humans from the dawn of the species use ever more
sophisticated clocks (starting with the day-and-night cycle now having reached the cesium counter) on which you can react to do
whatever you need to in order to survive. In speculative physics it is assumed that less regular processes waver in rough accord with
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the regular ones. This for instance is assumed in the twin paradox, where twins start to deviate in “age”. In this “paradox”, body
“aging” of human primates is supposed to move with the speed of the “clock” they carry with him when on the move. That is
speculative indeed, for the real experiment is still impractical, but I personally believe this rough accord will once prove to exist in
much the same way as the revolution time of the earth does not waver way out of step with the cesium counter clock and tends to an
average slightly dropping through the ages. The predicted exact day length for today Thursday, 17 November 2016, is 24 hours, 0
minutes and 1.2583 milliseconds. For yesterday it was 24 hours, 0 minutes and 1.4101 milliseconds.
In our space-time diagram we have two worldlines, the vertical one of M and x=vt for M´. Strictly we do not have all points on those
two lines as events, but only a subset, since we shall handle the graph as mathematically infinitesimal and “clocks” are not: they have
a maximum resolution, there will always be time between two counts of whatever clock you make, so we do not have an infinite
number of events. But the points of events that are really measured and logged should be on those lines. 

Now consider hyperbola a in the Graph 1. Its algebraic expression is (explained in sections 1 and
2):

x2 – t2 = -a2

Consider for a moment the infinite set of movers of all speeds, all real values -1<v<1, that is  all
worldlines through O. Then hyperbola  a, x2 –  t2 = -a2  , is the curve connecting the points of all
events where one of these movers’ clockposition is a. Or: every mover’s clockposition event a is at
the point where its worldline cuts through the a-hyperbola. If we had movers of all speeds, those
intersection points together would form the a-hyperbola. That, oddly enough, is an empirical law,
first found in electrodynamics, later found to hold generally. We have drawn only two movers, M
and  M´,  thus  only  two  such  “clockposition=a”  events:  Q  and  S.  In  point  Q,  mover  M  ’s
clockposition is a. In point S, mover M´ ’s clockposition is a.

Hyperbola  a is  time frontier a:  under it,  all  movers’ clockpositions point  before a,  above it,  all
mover’s clockpositions point after a.

Thus as shown in Graph 1, in M ’s log, the event of point S “M´ ’s clockposition is a” is clocked at
the M’s event of point P, that is on a clockposition different from a. We call it  b. Strictly put: M
measures the event S: “M´ ’s clockposition is a” as happening simultaneous with (“at the same time
as”, “equitemporal to”)  its home event P where its own clockposition is b. Thus, our zero-mover M
measures the clock event “M´ ’s clockposition is  a” as  later than its own clockposition event Q:
“my clockposition is  a”. The time difference (time dilation) is PQ in the graph. At this stage we
only know the value of this time difference b-a as measured by M.

In Newtonian mechanics, you don’t have hyperbolas.
You have horizontal  lines.  Light speed is  implicitly
assumed to be infinite so a Newtonian worldline of
light  (avant  la  lettre,  these  graphs  got  invented  by
Minkovski  in  1907)  would  be  the  horizontal  axis.
Things turned out to be not like that, and in Graph 2
you see that the error gets worse with larger relative
speeds v (going to all corners). The full meaning of
these  comparative  graphs  will  be  clear  only  after
section 12.

Read in Graph 1: In M ’s measurement, the
event of point S: “M´ ’s clockposition is a” is simultaneous to the event  of point P: “M ’s - my -
clockposition is b”, and later than Q: “M ’s - my - clockposition is a”

Now we do the reasoning from the other side. This is more difficult since we chose to give M the
vertical time axis, and the horizontal distance axis. M ’s measurement system is set orthogonal. That
is easy graph reading since events (points in the graph) are, for instance, b-simultaneous to M if
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they are on the horizontal line through b. And all parallel vertical line have all points (events) with
the same distance to M as measured from M. That means that all points on, for instance, ~

P S in
Graph 1 all have the same distance vb to M, measured from M.

But measuring from M´, simultaneity and equidistance must be read differently in the graph. We
drew two hyperbolas: a and b. Here, we think of a and b as fixed values so let us write this infinite
parameter family of hyperbolas for arbitrary values τ∈ℜ  as

x2
−t2

=−τ2    , so τ can be any real number, and we think of a and b as two such real numbers.

Both M and M´ experience events like “my clock reads a”, “my clock reads b”, and this how each
of them defines his time, called “home time” or “rest time”. But M ’s and M´ ’s home times differ.
Worse:  the  difference  is  measured  differently  from  the  two  sides.  Even  worse,  there  is  no
compromise to strike, these are two standpoints that cannot be turned into one. Both can measure all
events, both “home”-events and “away”-events, using their own home time and home distance as
the grid. We did so for M, now we have to shift to reading M´ ’s time and distance grid. After we
have the transformation,  both movers can of  course translate  their  data  in  terms of the other’s
measuring grid.

Think of British and Egyptian pounds. Their value differs. Whoever plans an investment relating the UK and Egypt can
calculate and write his project sheet either in British pounds or in Egyptian pounds, depending upon whether he mainly
deals with British or Egyptian oriented partners. Or he can print a project sheet transformed into the other currency in an
appendix, for those to whom this is more convenient. Similarly we shall now have M-meters,  M-seconds and M´-
meters. M´-seconds. The difference between them derives from relative speed v of M and M´.

Let us first consider local time in a small neighbourhood around M´. If M´, while being at point T,
where  his  clock  reads  b,  looks  to  movers  with  slightly  more  and  slightly  less  speed,  in  what
direction in the graph will you find the events where M´ ’s near neighbours’ clock also reads b?
Those “clockposition  b” events  of a  small  section of movers  near  around T with only slightly
different speeds should be be along the b-hyperbola x2 – t2 = -b2 . But there, locally, that hyperbola
slopes seriously up to the right, down to the left. M would certainly not measure such a line section
of heavily sloping equal clock events as happing on the same time. But M´ and his close neighbours
do, in fact perceive the similar neighbourhood of M as equally heavily sloping.

Here  we  need  some  mathematical  properties  of  the  hyperbola  generally.  The  slope  dx/dt of  a
hyperbola x2 – t2 = -τ2 (for any value of τ) at the point where the worldline x=vt  of some mover with
some speed v cuts through this hyperbola turns out dx/dt=1/v (see section 6).  This slope indicates
the local time frontier at some point on an arbitrary worldline  x=vt. If M´ ’s worldline is  x = .5t
(80% of light speed) this is dx/dt=1/.5=2.

Yes that is twice the speed of light, impossible for moving hardware. But it is no moving hardware. It is the local time frontier. More
in section 5.

 
This value 1/v for local time frontiers where  x=vt cuts through the hyperbolas hold for the entire
family of τ-hyperbolas, so everywhere along the worldline x=vt. This means that the tangential lines
where  x=vt  cuts through  one of the hyperbolas of the family  x2 –  t2 = -τ2  are all parallel. The
parallel lines through S and T in our graph are two examples. But! This holds for any other mover’s
worldline with any other value of v. In other words: for all v and all τ, at the point where x=vt cuts
though hyperbola  x2

−t2
=−τ2 , the hyperbola has dx/dt=1/v. (this proof, very important to the

space-time diagram, is  reproduced in section 6)
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In that small neighbourhood around T, the iso-clockposition line is approximated by straight line
through T with the slope 1/v ,  (if  v=.5 it  is  1/.5=2). In other words: it  is  approximated by the
tangential line of the  hyperbola x2 – t2 = -b2  at T. That is the line through QT. 

Yes, this implies that for instance at S, but generally at every point of M´ ’s worldline, the tangential line of the τ-hyperbole which the
worldline cuts through at that point has exactly the same slope 1/v. (more in section 6)

In  our  example,  in  M  ’s  measurement,  the  event  of  point  S:  “M´  ’s  clockposition  is  a”  is
simultaneous to the event of point P: “M ’s - ‘my’ - clockposition is b”. In other words: points P and
S, connected by the blue line, are M-simultaneous.
In our space-time diagram this should mean that the reverse holds as well: in M´ ’s measurement,
the event: “M ’s clockposition is a” - but this is point Q! - is simultaneous to the event: “M´ ’s - 'my'
- clockposition is b” - which is point T . Again, in other words: points T and Q, connected by the
green line, are M´-simultaneous (simultaneous in M´ ’s measurement). (Proven in section 9)

In section 9 it is proven that this is a general mathematical property of the hyperbola family with
parameter  τ:  x2

−t2
=−τ2 .  So this holds for every value τ ,  that is for the entire family of  τ

-hyperbolas, not only b. Hence any value for b, together with M´ ’s worldline will give you a (as a
function  of  b),  and  the  event  “M ’s  clockposition  is  a”  will,  a  matter  of  pure  math,  be  M´-
simultaneous to “M´ ’s – my – clockposition is b” (section 9).

So both movers M and M´ consider the moment on which the other’s clockposition is  a to be
simultaneous to the moment their own clockposition b. That is the symmetry of relative time. 

Another way to see the symmetry is to compare our
graph with one where M´ ’s clock and distance log is
set  orthogonal,  so  treated  as  the  non-mover,  or
reference.  This  amounts  to  a  crude  image editor’s
horizontal flip of Graph 1 into Graph 3. 

This  flipped  graph  presents  the  same  relative
movement  as  M moving  backward from M´  with
speed v= minus 0.5c. And, though in this version of
the  graph  M´  is  the  one  who  has  the  directly
readable values and the algebra of the measurement
of M will be the hard one requiring consultation of
the  coming  sections,  all  conclusions  will  be  the
same.

When there are different perceptions of simultaneity
there must also be different perceptions of distance,
for  by  “distance”  between  moving  hardware  we
mean distance between two such things at some moment. Now two movers measure, as soon as they
have a non zero relative speed v,  different lines of events as simultaneous (“at the same moment”)
they take different pairs of events to measure the distance of the hardware involved, hence surely
measure different values.

Distance  measurement  by  M and  M´,  though  yielding  numerically  different  results,  should  be
symmetric, just like time measurements. And will prove to be in section 8. M-meters and M´-meters
differ as soon as M and M´ moves relative to each other, and it’s quite analogous to the difference
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between  M-seconds  and  M´-seconds.  In  Graph  1,  a  left-right  x-hyperbola  of  equidistance
measurement x=vb is drawn, to see that analogy. More about this in section 8.

The consequence, odd but welcome, that even inspired the very construction of the system we now
use to compare measurements of different movers is that the speed of light moving from M to M´ or
vice  versa  will  always  be  measured  by  both as  c,  which  we  set  in  our  graph  as  the  unit  of
measurement. In meters and seconds it is 299 792 458 msec ¹.⁻

This can be practiced by launching light pulses from M ’s worldline to M´ ’s worldline and back. In the reference
mover’s orthogonal grid they appear as 45o (up rightward c=1 or leftward c=-1). If you correct for the skewed grid of the
other mover (see appendices) you will also find c=1 or c=-1. And in the flipped Graph 3 that skewed grid is transformed
into an orthogonal one and you directly see that the angle of these red light lines of the skewed grid indeed do not flip
with the rest.

We can draw worldlines of light pulses. We did so for the special case of the two passing forward
and backward at O. Those are the red lines. And we extended these two red lines into the third and
fourth quadrant where everybody’s t is negative, where those two light pulses came from in the past,
before reaching (x,t)=(0,0). But though light pulses have worldlines, this does not mean that in these
calculations we can treat a light pulse as one of the two movers. For movers  (hardware, with a
mass) v=1 is an unattainable speed limit. The reason should remind of infinity (∞), which cannot be
treated  as  a  real  number.  Whatever  τ  you  choose,  even  its  limit  to  infinity,  for  a  hyperbola

x2
−t2

=−τ2  to reach the worldline of light, x and t should become infinite. In this infinite point
the hyperbolas tangential line would be 1. That infinite point would measured “from the light pulse”
be equitemporal (follow the red light line back left downward) to  x=t=0. Einstein is rumoured to
have thought as a boy: “what would you see if you were sitting on a light pulse?”! The answer he
later gave is clear from this: nothing. First because relative to light speed light stands still and could
not reach your eyes. Second because you have mass and light speed is the unattainable upper limit
of speed for hardware, that is, movers with a non zero mass. Oddly enough, even moving very near
light speed relative to another mover you will measure the very same speed of light passing you:
299 792 458 msec ¹.⁻

This should have prepared the reader for the details.

1. What is a hyperbola?

The general formula of the hyperbola is x2

a2 −
y2

b2 =±1 (1) (why? Appendix A)
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If  x2

a2 −
y2

b2  = 1 (see  Graph 4) you get a left-and-right hyperbola with -a and  a as extremes, if

x2

a2 −
y2

b2  = -1 you get an up-and-down hyperbola with  b and -b as extremes.  The graph shows

curved line grids for line for many versions of  x2

a2 −
y2

b2 ,  that is for many values of a and b,

keeping a/b the same so the two families of hyperbolas share the same two asymptotes y= ± (b/a) x.

This  is  in  preparation of  what  families  of  hyperbolas  are  going to  look like in  the  space-time

diagrams of relative geometry.

In all four directions the first three curves are omitted, which leaves the centre of the graph white.
We could have done so and have filled this white space. But the lowest hyperbolas, where a=b=0
are drawn, in red: in the origin the four curves are degenerated to the red cross.

If necessary, check Appendix A on the  basics of the hyperbola to make this fully clear. You will
need it.

2. Space time diagram

The  space  time  diagram  hyperbolas  have  the  forms  x2

a2 −
t 2

b2 =±1 ,  where  x  is  the  distance

between two movers (as measured by  mover M with its orthogonal grid) and t is the clockposition
at which this distance is measured (by M).  Now the points in the graph are events. Event  Z (see
Graph 5 below) happens at some distance x and some time t, read: “M measures event Z happening
M-simultaneous with M ’s clockposition t is b and M -distancereading x is f, that is at (x,t)=(b,f)”. M
´ measures different values (x´,t´) for that same event Z. This (x´,t´) will appear only in later graphs.

Thus, throughout we shall have to distinguish between  time and  clockposition (one word, local
orthography!). That is because same clockpositions of movers will be measured by those movers at
different times. Similarly we distinguish between distance and distancereading (one word), for the
identical distancereadings by different movers will not even give the distance to the same event at
the moment where the two are together in the origin!

A  uniform  mover  M´  moving  away  from  M  with  speed  v experiences  a  series  of  home
clockpositions t´. Those are called events. Each of these events enter the log of our zero mover M as
(x,t). In (x,t), t is the clockposition of M (not the t´ of M´ !) at which M clocks the event of M´ being
at its M´ clockposition t´. M logs the movement of M´ as a linear series of events called worldline v:

x=vt  (2)

3. Normalizing the space-time diagram

If you take meters as x-unit and seconds as the t-unit, the graph will come out like this Graph 5:



9

The reason why the red lines are not orthogonal is that we measure in meters and seconds. For light
speed is 299 792 458 msec-1, roughly 3x108msec-1. For light speed c (rounded) is c =  3x108x/t, so
the equations of the red lines read x = ±1/3x108t. In fact, that would make the red lines in the graph
unreadably close to horizontal. The graph as drawn already uses 108  m as the unit, so in Graph 5,
x= 3t. That is, the red lines have slopes 1/3 and -1/3. We chose c as the fixed ratio ±b/a of the red
asymptotes so the equations of the red lines are  

x = ±tb/a = ±ct =  ±t/3

That means if we have a value for  b, the value for  a is fixed by  c as  c=  ±b/a, thus  a=±b/c and
substituting c for a in the formula for the hyperbola we get:

x2

(b /c)2 −
t 2

(b)
2 =±1 (3)

Normalization of  units  means:  setting the distance unit  such that  c=x/t=1 thus  x=t.  If  we keep
sticking to our seconds, what would the desired distance unit be? That means getting rid of that 3,
precisely: that 2.99792458. Our distance unit should be 2.99792458x108m, rounded 3x108m.

We stick to seconds, so now, in the graph, the graph length (as you would measure with a ruler on a
paper graph) of a second on the vertical axis should be equal to the graph-length of a lightsecond
(2.99792458x108m) on the horizontal axis. Zooming the graph out, a year will graph-measure as of
the same length as a lightyear. Zooming in: a nanosecond will have the same graph-length as a
lightnanosecond (that would be 30 cm if your graph has scale 1:1).
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Now the worldlines of the two light pulses going through (x,t)=(0,0) slope an elegant 45o that allows
for easy overview of matters and efficient thinking, without any loss or distorting simplification.
With c=1 hyperbola (3) simplifies to:

x2

b2 −
t 2

b2 =±1 hence x2
−t2

=±b2  hence  (4)

By measuring distance in lightyears, lightseconds etc. we now have normalized the hyperbola, we
have set  a=b=c=1. In an ordinary image editor that means vertical scaling of Graph 5 with 300%
(precisely: 299.792458%) while keeping the horizontal width. I did so, to make Graph 6, bluntly,
for that even stresses the point.

Thus the red lines are set 45o.

4. Defining the τ-parameter-family of t-hyperbolas

The formula x2
−t2

=−b2 describes one hyperbola, that is one curve. We think of  b as a fixed
value. The family of curves for all such values shall be written as

 x2
−t2

=−τ2 for τ∈ℜ (6)

By taking fixed values τ=a, τ=b etc. you turn the generic formula x2
−t2

=−τ2 into a formula of a
real hyperbola.  Using expression (6) we can consider things generally: “time frontier τ”.  The up
and down hyperbolas of Graph 6 are some of the infinite number of members of that family.
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5. Deriving the algebraic equations of the hyperbola tangents.

Sticking to the positive side, hyperbola’s of the family τ (6) have a minimum of τ. For t→∞, they
have two asymptotes. One is x=t, the red line of the light pulse parting from the origin (x,t)=(0,0) in
forward, positive direction. The other is x= - t, the red line of the light pulse parting backward, in
the negative direction. 

We write the τ-hyperbola x2
−t2

=−τ2  as a function of t:

x=±√t2
−τ2

=±(t 2
−τ2

)
1/ 2

We  calculate  the  derivative  of  the  positive  version  (first  quadrant)  which  the  chain  rule  for
derivation:

dx
dt

=
d (t 2

−τ2
)

1 /2

d (t 2
−τ2

)
⋅

d ( t2
−τ2

)

dt
=

1
2
( t2−τ2)−1 /2⋅2=

t

√ t 2
−τ2

(5)

In the first quadrant near the point P: (x,t)=(0,τ) dx/dt approaches infinity, with means the tangent is
getting horizontal. For t→∞, dx/dt tends to 1, the speed of light.

6. Important hyperbola property: tangents at the points of the τ-family of hyperbolas where,
for some v, a worldline x=vt subsequently cuts through them, are all parallel with slope 1/v.

In  Graph 7, six of these parallel tangent lines for the
intersections of the  τ-hyperbolas with  x=vt are shown
(green). 

Those tangent line slopes are all 1/v and hence

all  parallel.  The  proof  is  this:  the  points  of

intersection of x2
−t2

=−τ2 (6) and x=vt (2) can

be generally characterized by eliminating x and

t in (6) and (2). Substitute x=vt in (6):

vt2
−t 2

=−τ2 hence

 t=±
τ

√1−v2
(7) 

and 

x=vt=±
vτ

√1−v2
(8)

Taking the positive side, the value of  
dx
dt

=
t

√ t2
−τ2

(5) at the point 

(x ,t)=(
vτ

√1−v2
,

τ

√1−v2
) (9)

is obtained by putting the t-value of (9) in (5):
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dx
dt

=

τ

√1−v2

√ τ2

1−v2
−τ 2

=
1
v

(10)

Both  numerator  and  denominator  have  factors  τ,  canceling  each  other  out.  The  remaining
expression, in v only, simplifies to 1/v.

Hence for different values of τ the tangent lines read:

vx=t−ψ   (11)

, for some ψ. 

Choosing a value of ψ, however, means choosing a value for τ. We can get rid of ψ by expressing it in τ. We shall do
that at the end of section 7 (formula (16>17)).

Where  M´  ‘s  worldline  x=vt cuts  through  a  hyperbola  x2
−t2

=−τ2 for  some  τ, movers  just
slightly slower and faster will have clockposition τ when along the hyperbola, which at this point is
approximated by the tangent line, and that tangent line, we now know, has a slope of 1/v. Locally
that  tangent  line is  the time frontier,  not only when measuring near  neighbours,  but measuring
everywhere:

For all values τ, all event-points on the entire tangent line of hyperbola x2
−t2

=−τ2  , that is, the
specific tangent line where x=vt cuts through this τ-hyperbola, are measured by M´ as happening at
M´ ‘s clockposition τ.

Fortunately, as we now know, for some value of v, that is, for some specific x=vt , the tangent lines
through all hyperbolas x2

−t2
=−τ2 all have the same slope, so they form a neat series of parallel

lines forming the time grid of M´ ‘s measurements. But movers with different speed v have different

values for  
dx
dt

=
1
v

hence a differently sloping grid. In other words: they have a different linear

selection of events (formula (11) for a different v) that are measured as simultaneous.

7. Using the hyperbola to calculate time dilation

In M ’s log, the event “M´ ’s clockposition is a” is timed on b (check Graph 1 again). Strictly put:
M measures the event S: “M´ ’s clockposition is a” as happening simultaneous with (“at the same
time as”, “equitemporal to”)  its home event P where its own clockposition is  b. Thus, our zero-
mover M measures the clockposition- event S (“M´ ’s clockposition is  a”) as later than the event
where his its own clockposition is a: event Q. The time difference (time dilation) is PQ in the graph.
At this stage we only know the value of this time difference as measured by M.

In M ’s measurement, the event of point S: “M´ ’s clockposition is a” is simultaneous to the event  of
point P: “M ’s - my - clockposition is b”, and later than Q: “M ’s - my - clockposition is a”
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Using the math of the hyperbola, a can now be expressed in b (the values derived below are put in
Graph 8): M measures M´ ’s clockposition a event point S as  (xS, tS) = (vb,b). Substituting (vb,b) in

x2
−t2

=−a2 yields:
(vb )

2
−b2

=−a2 hence a=b√1−v2

This means we can also express the  a-hyperbola in  b and drop  a from the analysis  altogether:
x2

−t2
=−b2

(1−v) . 

This allows us to express  time dilation, for instance, the (clock-) position difference at M-time b
between  M´ ‘s clock (at S) and M’s clock (at P). It is:

b−b√1−v2
=(1−√1−v2

)b (12)

Similarly, M’s measurements of the event point T (M-equitemporal to point R in Graph 8) can be
expressed in b by using x=vt (2) and  x2

−t2
=−b2 (4) solving (2) and (4) for (x,t),  (we take the

positive side only)

(vt )2
−t 2

=−b2 hence t=
b

√1−v2
  It follows x=vt=

vb

√1−v2
, hence 

(x,t)=  (
vb

√1−v2
,

b

√1−v2
)  (13)
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Generalizing this from b to all values of τ, this also allows us to get rid of this ψ in the expression 

for the family of τ-tangent lines vx=(t−ψ ) (11), that is, the family of tangent lines of τ-

hyperbola x2
−t2

=−τ2  (6) through one specific worldline x=vt. The generic description of the 
points of intersections  (solving (x,t) in (6) and (11)) is analogous to (13)

(x,t) = (
vτ

√1−v2
, 

τ

√1−v2
)   (14)

Put (14) in vx=(t−ψ ) (11):

v
vτ

√1−v2
=

τ

√1−v2
−ψ (15)

solve  for ψ:
ψ=τ√1−v2 (16)

So the tangent line vx=t−ψ (11) becomes: 
vx=t−τ √1−v2 (17)

This means now in (17) we can directly read from the equitemporal tangent line of a τ -hyperbola
the clockposition τ of the v-mover when at hyperbola τ. Remember a τ-hyperbola itself connects the
points where all movers (with all speeds -1<v<1) have that same clockposition τ. So every mover
sees, at every single one of his own clockpositions τ

1. from vx=t−τ √1−v2 (17), along the straight line: all events
τ-simultaneous to himself (not to movers with different speed!)

2. from x2
−t2

=−τ2 (6), along the hyperbolic curve with value τ: all
events where other movers have the same clockposition τ

In section 11. we shall see that τ in (17) can be identified with t´ of the Lorentz transformation for the time variable, so
(17) is that transformation in disguise. The transformation will come by solving (17) for τ.

8. Using the hyperbola to calculate distance dilation

The procedure of calculating distance dilation is analogous to that of time dilation: It consist of
adding to the (“up-down”) time hyperbolas τ the (“left-right”) distance ξ-hyperbolas (Graph 9):
 x2

−t2
=ξ2 (18)

For movers of all speeds -1<v<1,  ξ-hyperbolas plot out curves of event-points that each have the
distance ξ, each to one of those movers when at at the origin. 

The following imaginary experiment was helpful to me: I  imagine we launch a set of shiny balls, one for every mover (all speeds
-1<v<1 ) to gauge,  by launching a light pulse to bounce on it,  in order to determine “his” ball’s distance when the mover is at the
origin. And we want to launch them such that all movers will measure for “their own” ball the same distance ξ (we launch such that
everybody identifies another ball, but all should measure the same distance ξ).  Each mover identifies and distance-measures “his”
ball. Then the space-time-position of all of these these balls at the moment they get flashed by “their” mover should be exactly on the
hyperbole x2

−t2
=ξ2 (18) as drawn in Graph 9.

The relation between the  τ-  and the  ξ-hyperbolas is seen by first writing M’s x-values of M´ ‘s
worldline  x=vt corresponding  to  Q,P,R.  Section  7  produced  the  algebraic  expressions  of  the  t-
coordinates of Q,P,R. To obtain the corresponding algebraic expressions for ~

Q ,~P ,~R in Graph 9
we multiply by v to get the expressions shown next to ~

Q ,~P ,~R . We mirror them to the negative x-
axis as well since M´ is obtaining the negative measured distances at Q,P and R when measuring te
distance of M. 
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At the right side are the distance hyperbola’s for positive ξ. The ones through ~
Q (ξ= vb √1−v2

)  and ~
P (ξ=vb)  and  are  drawn.  At  the  left,  the  negative  side,  we  drew the  ones  for  Q (ξ=

−vb√1−v2 ) and P (ξ= -vb). At the time of event-point P, M measures M´ at distance vb of point
~
P d( PS )=d( O

~
P ). M´ measures M at -vb  over QT. At the origin the equidistance parallel of

QT is OT . T is not on the x axis but on M´ ’s equitemporal line through O, and on the ξ-hyperbola
with  ξ=vb. M would read this distance as that equidistant (vertical for M) with point  R, that is:

−
vb

√1−v2
.

Distance  dilation  is  analogous  to  time dilation.  From M’s  point  of  view the  analogon  to  time
dilation (12) is distance dilation is  ~

Q ~P , from M´ ‘s point of few it is backward, negative, QP
−vb√1−v2

−(−vb)=bv (1−√1−v2
)  (19)

Thus distance dilation always is v times the corresponding time dilation.
M´ ‘s equitemporal line from the origin can be written (Graph 9) :
vx=t  (20)
Where (20) cuts through a ξ-hyperbola, the tangent of the hyperbola at that point is the locus of all
events that have distance ξ from M´ at some point along M´ ‘s worldline x=vt, hence read (this is the
ξ-analogon of (11)):

vt=x−φ (21)

for some φ. 
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For φ=0 this is the worldline. On the worldline of M´, everything has distance 0 to M´. Choosing a
value for φ means choosing a distance, a value for  ξ  . So we should be able to eliminate φ  by
expressing (21) in ξ and v only.

We want a generic description of any point where vx=t cuts through x2
−t2

=ξ2 (18). Solving (x,t)
from (18) and (21) yields (analogous to (14)) sticking to the positive side:

(x,t) = (
ξ

√1−v2
, 

vξ

√1−v2
)   (22)

Put the expressions for (x,t) of (22) in (21):

v
vξ

√1−v2
=

ξ

√1−v2
−φ (23)

Solve for  φ (analogue of (16)):

φ=ξ √1−v2 (24)

Substitute (24) in (21) to get analogue of (17): 

x=vt +ξ √1−v2 (25)

This means now in (25) we can directly read from the equidistance tangent line of a ξ-hyperbola the
distancereading  ξ of  the  v-mover  of  the  object  at  hyperbola  ξ.  Remember  a  ξ-hyperbola  itself
connects the event-points to which some mover (with all speeds -1<v<1) has distancereading ξ from
the origin. So every mover sees, at every single one of his own  distancereading ξ

1. from x=vt +ξ √1−v2 (25), along the straight line: all events
at the distance ξ from himself from all points of his worldline

2. from x2
−t2

=ξ2 (18), along the hyperbolic curve with value ξ: all
events where other movers have the same distance reading ξ

Formula (25) is, like (17), a Lorentz transformation in disguise, this time the transformation of distance: solve for ξ (see section 12)

9. Symmetry proven

Symmetry holds when always if mover M measures some other mover M´ to be at M-distance-
clockposition (x,t)=(vb,b), then M´, in it own grid point notation (x´,t´) measures M at M´-distance-
clockposition (x´,t´)=(-vb,b).

Why -vb (negative)? That is because when M´ is at a positive distance from M then M is at a negative distance from M´

Graph 9.  The first steps of the proof are in section 7: P,  where  t=b, gives you S where M´ ‘s
clockposition  is  a=b√1−v2 .  Then  S  gives  you  (over  the  hyperbole)  Q,  where   M’s
clockposition is the same a=b√1−v2  
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This remains to be proven: 

1. While measuring M at distance -vb, M´ ‘s clockposition is b. That is: we have to prove that has
the  value  such  that  tangent  line vx=t−τ √1−v2 (17)  goes  through  T,  then:  τ=b. To  see  this

substitute (x,t)=  (
vb

√1−v2
,

b

√1−v2
)  (13) in (17)

 v
vb

√1−v2
=

b

√1−v2
−τ √1−v2 and solve for τ. Speed v cancels out and τ=b, Q.E.D.

The second part of the claim to prove is:
2. At M´-clockposition b, M´ measures M at a distance of -vb. The simplest proof is this: When M´
moves from M with speed v, M moves from M´ with speed -v (minus, in the negative direction).
Thus when M´ is at its M´-clockposition  b, which we know from part 1 of this proof, it should
measure the distance to M as -vb.

10. The famous Lorentz-transformation formula’s

The purpose of Lorentz transformation is this: our graphs up to now order events (points in the
plane) following M ‘s measurements (x,t). M ‘s grid is nicely orthogonal, and M´ ‘s grid is skewed,
though luckily rectilinear.

M´ ‘s grid is rectilinear only because throughout special relativity, theory is basically restricted to uniform speeds v:
there are no gravitational or electromagnetic forces so there is no accelerating, decelerating or curving hardware in the
space-time we consider.

This  means  that  (Graph 10)  every point  measured  by M as  Z=(x,t)  has  another  pair  Z=(x´,t´),
measured from M´. The two Lorentz equations form the algorithm that produces Z=(x´,t´) from
Z=(x,t) for all Z in the plane. In their famous form the Lorentz equations read:

t '=

t−
v

c2
x

√1−
v2

c2

(26)

x '=
x−vt

√1−
v2

c2

(27)

c is light speed, a universal constant. In par. 2 we set c to c=1 , without any loss if information, by
adjusting our distance unit x for that purpose. This means in our choice of units we can substitute c
=1 in (26) and (27) to get:

t '=
t−vx

√1−v2
(28)

x '=
x−vt

√1−v2
(29)

So (28) and (29) are now the equations to derive, that is: to prove true for all event points Z=(x,t)

which are, measured from M´, now written Z=(x´,t´). 
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11. Deriving the Lorentz time-transformation formula
Lorentz equation (28), the transformation of t to t´, can be obtained solving vx=t−τ √1−v2 (17)
for τ:

 τ=
t−vx

√1−v2
(28)

Remember that along a τ-hyperbola all clocks read the same, hence τ=t´=t, and (17) is the equation

of a tangent line of a  τ-hyperbola at the point on the worldline of mover M´ exactly where he

measures t´ for event Z.

12. Deriving the Lorentz distance-transformation formula

Lorentz equation  (29)  and  x´ are  caught  by considering the family of  equidistance  ξ-hyperbola
(Graph 10) x2

−t2
=ξ2 (18) and its associate equidistance tangents x=vt +ξ √1−v2 (25) where

a speed v mover’s equitemporal  line xv=t cutting through it. Solving (25) for  ξ:

ξ=
x−vt

√1−v2
(29)

And indeed  ξ=x´. For remember that along a  ξ-hyperbola  ξ=x=x´,  and x=vt+ξ √1−v2 (25)   is
the equation of a tangent line of a  ξ-hyperbola at the point on  xv=t where mover M´ measures
exactly x´ for event Z.

In our example, both x and x´ are postive since to both movers, Z is forward. But Z can be between them or at the rear of both and
signs for distance measurements will change.

Realizing  ξ=x´  took me some more  time to  realize  than  realizing  that  t´=τ.  That,  I  think,  was
because physically,  the  τ-ξ analogy is  not perfect:  an event involving some M can read: “M’s
clockposition  is  a”.  But  there  is  no  analogue  of  distance  “M’s  distance  reading  is  vb”,  for
distancereading, unlike clockposition, is relative to another mover M´, hence cannot independently
characterize an event. Clockposition readings are “absolute” in the sense of being independent of
any other mover, and thus do really on their own characterize events.

But there is another sense in which, on the contrary, it is distance which is the “absolute” variable of
the two: setting time to zero, as we did in the origin, is an arbitrary decision. You can sync clocks at
another pair of  events ((x,t), (x´,t´)), while setting distance to zero at the origin only makes sense
ony if M and M´ really have the same position, really are at the same place. And being at the same
place the same moment is an  absolute measurement, for when movers are together at one single
position, all simultaneity divergence issues have vanished.

Despite these differences in the nature of time and distance, in the mathematical aspect the analogy
is perfect: the line O

~
P in Graph 10 measures xZ, Z’s M-equitemporal distance to M (at M’s time

tZ), and O
~
T measures, in M´ ‘s grid, x´Z, Z’s M´-equitemporal distance to M´ at M´ ‘s time t´Z.

O
~
R measures the same value x´Z   ,  but in M’s grid.  Movers with other  speeds will  have  ξ-

tangents to other ξ-hyperbolas when measuring that same Z, that is, measure yet another value for
their distance x to Z. If we consider one equidistance hyperbola for one value of ξ, then for every
mover 0<v<1 this represents a different event. Some may be helped here by putting it thus: the point
where the isotime tangent line though the origin, v´´x=t, of some third mover M´´ cuts through a ξ-
hyperbola on which M measures its distance to Z as ξ (thus ξ=xZ ), tells you where Z should have
been to be measured at a distance ξ by M´´: it’s a different event, a point different from Z in space-
time.
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Hence: though the formulas for ξ and τ are perfectly analogous, the physical interpretations of x and
ξ differ from those of t and τ.

Summary: Lorentz from scratch on one page (looking at Graph 10)

We refer to the formula’s in brackets, numbered as in Graph 10. 

Measured in the orthogonal grid of mover M, the movement of mover M´ with uniform speed v is a
linear  sequence  of  events  (2).  In  every  subsequent  event  on  (2)  M´  experiences  a  next  home
clockposition t´. At T, for reasons that will become clear below this clockposition is t´Z. For now it
only matters that T has some fixed value t´Z  of t´. Hyperbola (30) represents the locus of all events
where all movers with all speeds  -1<v<1   experience a home clockposition of this specific value t
´Z. So (30) is the time frontier t´Z : above (30) , every mover’s clockposition is later than t´Z , below
(30),  every mover’s clockposition is  earlier than  t´Z.  Locally at  T,  time frontier (30) slopes up
conforming T’s tangent (17) the slope of which is determined by the speed  v of M´. Hence (17)
represents simultaneity as it is experienced by M´ at T, in other words, all event-points in space-
time simultaneous to event T in M´ s measurement grid are on (17).  Off (17), at R, it is M who
experiences that same specific clockposition t´Z.  But at R the tangent line of (30) is horizontal. 

It follows from the mathematical properties of the hyperbole that all tangent lines of all time frontier
hyperboles of type (6) for any τ∈ℜ through worldline (2) of M´ are parallel and of form (17) for
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some τ. In other words: when you change the value of τ in (17), you get another line parallel to the
(17)-version drawn in  Graph 10. And this line will be a tangent of the hyperbole exactly at its
intersection with (2). M has similar tangent lines, but these are all horizontal, like the one through P
and the one through R.

Now consider the event Z. Z is measured by M as (tZ,xZ) and by M´ as (t´Z,x´Z).  we can directly
mark the coordinates (tZ,xZ) on the orthogonal axes of M. For Lorentz transformation of (tZ,xZ) into
(t´Z,x´Z) we need to express  t´Z in tZ and x´Z  in xZ  , that is: we need to find out where to mark t´Z and
x´Z on the orthogonal axes as well. Now I have to justify that I put those marks exactly where I did
so in Graph 10, that is: at points R and ~

R

For  t´Z my justification  is  as  follows:  how does  M´ measure  the  distance it  had to  Z when Z
occurred? M´ must check its log for the exact time at which Z occurred, and check its distance from
Z at “that moment”. At “that moment”! That is: in its log, M´ has to find back the position where it
was “when event Z happened”, that is its position when equitemporal to event Z. We call it T. The
tangent of the τ-hyperbole through T is that of  τ= t´Z  (30). So now t´Z  is no longer to be taken, as we
did above, as just an arbitrary value of τ. This t´Z now is, in M´ ‘s measurement, M´ ‘s clockposition
at which event Z occurred.  The event where  the other mover,  M, had  that same clockposition is
found by following from T the hyperbole (30) to M’s vertical t-axis, where you arrive at point R. So
at R we can mark the value of t´Z  on M’s vertical t-axis (and so we did in Graph 10).

The algorithm for this transformation derives from (17), which actually is an implicit form of the
Lorentz transformation of time: the algebraic formula for the connection from P to R (over Z and T)

is found  by substituting setting  τ=t´Z  in (17) and solving for  t´Z you get t ´=
t−vx

√1−v2
  (28). I

dropped the Z index as well, to generalize to any Z in the plane, that is, any Z in space-time.

Through analogous mathematical operations we get the transformation of distance (29): For x´Z we
do it as follows: the distance TZ in M´ ‘s measurement is equal to the distance O

~
T  (the points Z,

T, O ,
~
T form a parallelogram). ~

T is on the distance frontier ξ= x´Z (31). M measures the same
distance on the same distance frontier but since its measurements are set orthogonal, it does so in in
horizontal direction, that is,  at  ~

R . That is where you have to mark the value of  x´Z   on M’s
horizontal x-axis (as done in Graph 10).

The algorithm for this transformation derives from (25), which actually is an implicit form of the
Lorentz transformation of distance: the algebraic formula for the connection from ~

P  to  ~
R

(over Z and ~
T  ) is found by substituting, setting ξ=x´Z , in (25) and solving for x´Z you get

x ´=
x−vt

√1−v2
  (29). Again, I dropped the Z index as well, to generalize to any Z in the plane, that

is, any Z in space-time.
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Appendix A: the hyperbola at high school 

translation of 
http://www.hhofstede.nl/modules/hyperbool.htm and http://www.hhofstede.nl/modules/hyperboolasymp.htm 
from http://www.hhofstede.nl/,
the unparalleled Dutch reference website, said of highschool mathematics but in fact much more
by H. Hofstede, Warffum, Groningen.

The hyperbola can be defined in many ways but the one most efficient to begin with is by using the
concept of the equidistance line (or “conflict” line). 

It is the line of equidistance to a circle and a
point outside that circle, the red line in Graph
A1: PQ=PF.
But  because  PQ=MP-r,  it  follows  that  MP-
r=PF. Hence MP-PF=r.
That  is  why circle  centre  M is  also called a
focus point F.

So now (Graph A2) we write F2 instead of M
and F1 instead of F. We wrote  MP-PF=r,  now
we  write  F2P-PF1=r.  Adding  the  left-right
mirror yields a second branch where also F1P-
F2P=r. These two can be written as | F1P-F2P|=r
Graph A2 already makes clear that the distance
between the extremes equal r. 

So for a hyperbole:   | d(P,F1)-d(P,F2)| = r

(d: point distance)

We  construe  an  algebraic  formula  for  the  hyperbola  by
choosing the middle of the figure as the origin of the grid
(Graph A3). We denote the focus point coordinates by (c,0)
and  (-c,0),  and  the  extreme  points  by  (-a,0)  and  (a,0).
Hence r=2a.

At P: (x,y) we apply Pythagoras twice:
d (P ,F1)=√((x−c )

2
+ y2

)

d (P , F2)=√((x+c)2+ y2)

http://www.hhofstede.nl/modules/hyperbool.htm
http://www.hhofstede.nl/
http://www.hhofstede.nl/modules/hyperboolasymp.htm
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Hence:

√((x−c)2+ y2)−√((x+c)2+ y2)=2 a

which substituting b2=c2- a2 simplifies to:

x2

a2 −
y2

b2 =1

If P is chosen on the left branch the result will be the same.

If you interchange x2

a2
and y2

b2
to get

y2

b2 −
x2

a2=1 hence x2

a2 −
y2

b2 =−1

you get a hyperbola as on the right side of Graph A4:

up and down with extremes b and -b.

The hyperbola has two linear asymptotes: for x and y →∞ consider:

y2

b2 =
x2

a2±1 hence y=±
b
a
√ x2

±a2

for x→∞,   √ x2±a2=√x2=x hence y=±
b
a

x
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Appendix B: what’s more to see in the space-time diagram.

Causality

Suppose the event in the origin (0,0) is a crime scene.   Anybody
who previously was at an event in the pink area has a perfect
alibi. Anybody who afterwards was at an event in the blue area
has a perfect alibi as well.

This  does  not  imply  those  areas  are  perfectly  irrelevant  to  a
detective: crime scene O can be in a partial causal ordering of
events going through the coloured areas, and who knows e4 is the
real thing a ring of criminals, starting at e1, wanted to cause. And
the same holds for causes and effects in spacetime generally.

Proper concatenation of speeds not what humankind always
presumed it was

The geometry of special  relativity  shows that  though on earth
you can catch a rabbit from a running horse by adding the speeds
of both in aiming your spear, or arrive at the same time at the
beach with  a  fast  and a  slow car,  this  really  is  only  a  handy
tangential approximation at low speeds: in  Graph 11 M´ moves
relative to M with half the light speed. And M´´ moves relative to
M´ with half the light speed. That does not mean that M´´ moves
relative to M with twice half = the full light speed, but only 4/5 of
light speed (see Graph 11). The formula follows from doing the
Lorentz transformation between M´ and M and then transforming the transformed (x´,t´) again to (x
´´,t´´)  and  defining  v1=v(M,M´),  v2=v(M´,M´´)  and  v3=v(M,M´´).  That  nested   transformation
simplifies to:

v3=
v1+v2

1+v1v2

In the example v3 = 4/5. This shows again that light speed c=1 is unattainable for

moving hardware: how ever close both v1 and v2 come to light speed =1, v3 will never reach =1.

How movers measure distance

We dealt with movers’ distance measurements without bothering how such distances actually could
be measured. When gauging is done by creating a light pulse reflection on the measured object, a
mover has to shoot the pulse before “the moment” he wants to measure: the pulse needs time to
reach the object. Moreover, you calculate the distance your pulse traveled to and fro by timing it
and using the universal constant of light speed, so you will only know the result after “the moment”,
since the pulse needs time to get back. With “the moment” we mean the moment where the object is
while simultaneous with the home clockposition at which the mover intends to measure the distance.
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This shows that simultaneity  in  itself  not  independently observable:  a mover needs to measure
whether some away-event is simultaneous with with some home event, thus needs relativity theory
to understand what he is doing. In other words: to believe in your simultaneity tangents you have to
believe in relativity theory first. That is why text-books that start shooting pulses around to explain
relativity, take a logically impossible explanatory direction. We try better by addressing the issue of
gauging here, at the end, not at the beginning.

We analyse the measurements involved in our graph-illustrations thus far. High in Graph 13 you see
the situation we used, but greyed out. There now is blue line going right-up, making a rectangular
turn at S then going left up. That is M ‘s gauge of M´ ‘s position at P. We took it to be vb as in the
example we used throughout. Graph 13 makes clear that the gauging pulse is launched before P and
that while gauging for the distance from P, M does nothing at event P itself but waiting for the light
pulse to return! M´ ‘s gauge of M (green), with a pulse bouncing on M at Q, is analogous.
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Without changing any conclusion from this analysis we can simplify graph reading by moving both
gauging procedures down to were M’s orthogonally presented gauge targets something at an M-
distance vb from the origin, that is, at t=t´=0. Think of, instead of gauging each other, M gauges a
shiny ball we put at distance vb from M. And we give M´ another ball at -vb. It follows that in the
space-time graph we should hang M’s gauging target ball on the x-axis, exactly vertical under S in
the space-time graph, to make the ball’s distance to M  equal to vb.
M should shoot his gauging pulse (the blue half-square through  ~

P ) in negative time t=-vb to
reach his ball at t=0, and will get the pulse back at t=vb since his light pulse line (drawn with M’s
own grid orthogonal) makes a neat half-square.

M will launch the pulse at: (x,t)= (0,-vb)
The pulse will bounce at: (x,t)= (vb,0)
M will get the pulse back at: (0,vb)=
Total time for the pulse to and fro: 2vb  
Total distance made by the pulse to and fro (for we set c=1) : 2vb
The distance of M´ as measured by M thus is half the distance his pulse travelled: vb

But measured in M, M´ ‘s pulse (the green line throught T) does not make a half square for when M
´ launches the pulse, the point on M´ worldline from where M´ shoots is left of t-axis, and where he
gets it back after he moved to the right of it. So now where should we hang a ball for M´ to gauge it
-vb when M´-simultaneous to M´ when M’ is in the orgin? 

Written in M’s grid, (not M´ ‘s own grid!), M´ will send the pulse from his worldline x=vt  at t=

−
vb

√1−v2
.  In  graph 13 all  edges  of the the transparant  square green surface are  at  distance

vb

√1−v2
from the origin. M´ will get it back on his worldline x=vt  at t =

vb

√1−v2
in the event:

(x,t)=  ( v2 b

√1−v2
, 

vb

√1−v2
)

(this x is not shown)

The total time between launch and return of the pulse is

  
vb

√1−v2
- −

vb

√1−v2
= 2

vb

√1−v2

Remember 
1

√1−v2
>1 . So it took M´ ‘s pulse more than vb time to go from and return to M´, 

measured in M’s grid like we do in Graph 13. That is because in M’s grid, M´, while gauging, 
moved away from his gauging target, and his light pulse has to catch up with M´ which needs extra 
time. If you substract M´ ’s increase of distance from his gauging target while gauging, exactly vb 
remains, to be precise: -vb, for M´ is gauging in the negative direction.

Another way to see that -vb should come out as the home distance-reading by M´ when M´ target is 
at T is this: shift to M´ ’s own grid, that is, make M´ ‘s grid orthogonal instead of M’s, like we did 
in Graph 3, by means of a horizontal flip (Graph 14). Now, after the horizontal flip, the vertical axis
is M´ ‘s worldline instead of M’s and the half-square of blue pulse lines will now be M´ ‘s. Now it 
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is no longer M´ ‘s, but M ‘s measurement that should be corrected for the 1/√1−v2 . You see the 
very same gauging process log. You only Lorentz-tranformed the graph.


