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1. The problem

The problem to which relativity theory is the solution is the discovery in the late 18 th century, of the
absolute speed of light: from whatever position, moving relatively to other positions or not, light
speed c is measured as 299 792 458 m/s. I was told so at high school in the 1960’s, just memorized
it without asking myself whether I should worry about all I had learned on positions, including
sequences of clock positions, distances, dimensions of objects and and speeds. As far as I remember
it failed to push me in vertigo. Wrongly. It should have done so. It upsets everything. The problem
is this:

Think of a light flash passing two pieces of hardware in space:

Fig. 1

From both hardware objects light-speed is measured to be  c. This seems nothing to worry about,
even natural, if you consider these two one by one. How could light speed be different to them? It
starts to get puzzling once you consider a case in which the two objects are moving relative to each
other. Think of them moving away from each other at considerable speed relative to light, say half
of light speed, along the line of the light flash. Now customary non-relative habits  of physical
reasoning tell you that a light flash from the left should pass the left object faster than the right one:
“if you would sit on the light flash”, everything seems to tell you, “the left object should pass faster
than the right one”.1)

More precisely, these wrong habits suggest that if the flash passes the left object with speed c, and
the right object moves away from the left object in the same direction as the light pulse does, with
speed  v (v<c), the flash should pass the right object with speed  c-v.  The habit is forgivable for a
biological species like the human hunter, running, as is his method of survival, after a prey. From
the perspective of speeds in the order of light, both creep invisibly slowly over the earth’s crust: if
the light flash were a buck moving away from a sitting spectator with speed c while it outruns a
hunter pursuing it (the right object) with speed  v  (relative to the spectator), the hunter, would he
have had time for some contemplation would have “inferred” that the buck moves away from him
with relative speed c-v. But if you travel at a decent portion of light speed the error gets measurable
and nasty. Even in the trio buck–hunter–spectator the addition of speeds results in an error (far too
small for the hunter to notice). Our brains, genetically hunter–brains really, do not correct for it
since never in the history of our species, nor of any other on earth, a higher survival chance has

1) When young, Einstein famously asked himself: what would you see if you sat on a light-flash? His answer was: nothing 
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been associated with brains endowed with such a  sophisticated neuro-gadget.  The error  proved
evolutionary acceptable for biological species on earth2). In human society it used to be the same, at
least in the states of knowledge and technical performance until 150 years ago. We shall precisely
evaluate it.

The solution to the problem of “the missing v” was found by considering precisely how meters and
the seconds are measured. The amazing thing is that the way we do it, did it and always thought
about it, implies that for the two objects of Fig. 1 they have different outcomes: they are not the
same meters and seconds: measured from one object, what is measured to be one meter by the other
is not a meter, and the same with the seconds. And this distance-unit and time-unit transformation
exactly accounts for the v-factor in our customary erroneous non-relative way of reasoning. Their
speed relative to one another does not make the two objects measure light speed differently, but to
measure each other’s meters and seconds differently. Think of comparing England and Egypt and
finding out that the Egyptian and British pounds do not have the same value, that the British and the
Egyptians both tend to calculate and memorize prices in pounds of their own country. 

Suppose you are on the left object of Fig. 1 and I am on the right one. The light pulse passes me
while I move away from you in the same direction as the light flash. Yet, I log the speed of the flash
as the very same 299 792 458 m/s as you do, and not less, as your habitual thinking makes you
expect. Now you could consider the possibility that my meters are shorter, my seconds longer, or a
combination of both. If my meter-rod would be shorter than yours – in your perception - and my
clock runs slower than yours – in your perception - I would log a higher light speed (m/sec) then the
c minus v you expect me to measure. With smartly chosen rod length and/or clock-speed differences
I could even measure exactly the same light speed c as you did. As in fact I do.

If you look for such a type of a solution you should be ready to measure space and time in two
ways: from the perspective of the left object, and from the perspective of the right object. We have
two standards. One could add more objects (and with it, standards) to the example but that is of no
help to solve the problem. What we need to know is how the two standards (two pairs of meters-
seconds-units),  that  we  now  have,  relate  to  each  other.  The  problem  is  to  find  what  the
transformation of the meters and seconds of one object to those of the other depends on, and what
mathematical equations describe the transformation.

Doing that we give up the idea that space has a geometry (a set of coordinates, grids, for position
and time) of itself. If you have two movers in space, each has its own geometry, so there are two.
There is no third as long as there is no third mover, which is of no help to solve the problem. If the
coordinates of the two geometries would relate according to a fixed formula then in communicating

2) During evolution, other, more complicated corrections got built in the brains of biological species: chimps throw stones fast and 
far, with amazing precision, over elliptical orbits. Humans learned to correct for light diffraction when spear-fishing. But the archer 
fish is in a different league: while spitting water drops from below the water surface at insects sitting on branches above the water, it 
corrects for light diffraction at the water/air border, air resistance and even the elliptic curving of the water drop orbit under 
gravitation, that the drop is not affected by its own medium that it shares with the fish. From the viewpoint of physics this is in the 
league of a Mars landing.
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positions, time and speeds the two movers can transform any plot-data received from the other into
their own coordinates.

These are all pieces of the puzzle. The solution is called Lorentz transformation. It is a matter of
pure  mathematics.  The  math  was  derived  in  the  mid  1880’s  by  Lorentz  for  movement  in
electrodynamics (light experiments). There are two equations: one for the meters and one for the
seconds.  In  1905,  Poincaré coined the term  Lorentz  transformation for  them. In the same year
Einstein put them to general use by dropping the idea of a medium (“aether”) transmitting light
(which had been coined in analogy to sound-transmitting air) and applying them to all movement
generally.  What  followed  were  dramatic  simplifications  that  now  make  it  fairly  simple  to
understand special relativity with the help of highschool mathematics.

2. How to graphically represent moving light and moving objects

Consider an object C in space. It makes no sense to ask whether it moves or not. That would require
another object relative to which it would be moving. It is in uniform motion: neither accelerating
nor rotating, if it had a space somewhere inside with a loose object in it, as the gravity sensor of
your smart phone, this object would not be pressed against any of the walls and float freely. A phone
screen would never auto-rotate.
From C, two light flashes are launched along one single, straight line, in opposite directions. One
we call the rightward flash, the other the leftward. On C, a clock is set zero at launch.
In a graph, we plot clock-readings by C vertical up and distance horizontal.

Fig. 2

It is called a Minkovski or space-time diagram. We do not consider the space off the line. Our space
of analysis is this one line. Generalization to a real three-dimensional space would not change the
basic outcome and this limited set-up neatly focuses the brain on the steps to make. In the graph,
plotting time vertical the time-path of the rightward light-flash goes to the right up, the leftward
flash to the left up. How steep? That depends on the units of the graph axes. If you choose as the
time unit the second, and as the distance unit the light second (= 299 792 458 m), the light flash
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lines will slope at exactly 45o. Speed of light, in those units, equals 1 (one) by definition. You can
always choose units in such proportions. Analyzing cosmic distances you might for instance take
years and light-years, with the same result. Applying this procedure is called normalization. Setting
c=1 obscures nothing  and simplifies formulas.

What is a “clock”? Any regular process that has countable events can be used a clock. The sun
clocks years and days, sand glasses count turns, pendulum clocks count swings etc. The relative
precision of different types of clocks can be measured in comparative tests.

We focus on things moving on one single line (uniform motion), and the graphs keep track of that
movement by plotting time vertically, so speeds (leftward and rightward on that single line) can be
read as the angles between the graph-lines: low speed makes a small angle to the vertical axis, high
speed a bigger one, the speed of light has a 45o angle to the vertical axis.

We add two movers, B and D. D moves rightward and B leftward relative to C, with equal speed, on
the same line as the flashes, so the distance of B and D to their middle C will, while growing,
remain the same. At departure B, and D set their clocks to zero, as C did. To measure the distances
of B and D, C at some moment (event  el in Fig. 3) launches light flashes in both directions at
exactly the same time. Those flashes are mirrored by B and C to return to C. Light speed is fixed,
hence the time elapsing between launch and return of the light flashes will tell C at what distance B
and D were at the moment the flash reached their mirrors and bounced back. If C is properly in the
middle, flashes launched simultaneously leftward to B and rightward to D should return at the same
time. 

 

Fig. 3
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Fig. 3 shows the flash procedure that shall be referred to in the steps to come. The black straight
lines show how A, B and C move away from each other at constant speed and are called  world
lines. Using xC for C’s distance-readings and tC for C’s clock-readings, all points in the graph have
coordinates (xC,tC) and plot what are called events in C’s measurement. Where a mover’s world line
cuts through an event, this mover can do a clock-reading of it. Strictly, every reading of a position
of the clock of a mover is itself an  event on the mover’s world line. Coordinates  are no events;
instead,  events  have coordinates.  Those  coordinates  will  turn  out  to  have  different  values  if
measured from the perspective of different movers B, C, D, … Comparing those perspectives is
what Lorentz transformation is about.

Fig. 3 shows five events marked e: 
Event el: C launches two flashes, one rightward, one leftward. Only C can have a clock-reading of

this event at the moment of launch (since no other mover is there).
Event eD: a flash reaches D’s mirror. Only D can have a clock-reading of it.
Event eB: a flash reaches B’s mirror. Only B can have a clock-reading of it.
Event er: both flashes return to C. Only C can have a clock-reading of it.
Event e1/2 : event of the clock-reading by C half-way between el and er. This event cannot be clocked

as it happens by C nor by the other movers. It can only be calculated later, after C has read its clock
at er, for uniform motion means: the event half way is the event half time.

The flashes launched at  el  make, in the graph, 45o and -45o lines. That means they are parallel to

those launched at origin O, since the flashes they depict have the very same speed of light. And this
remains after the two flashes are mirrored and return. Thus, the flash paths form the red square in
the graph.

Retracing event  e1/2 – “half way is half time”  -  is important to C because in C’s perspective this
home event e1/2  is simultaneous to the away-events eB and eD . That means C’s clock-reading  of e1/2

is, in C’s perspective, the “time at which eB and eD happened”. 

At event er, C will know, by calculation, where B and D were halfway the time between C’s clock-

reading  of el  and of er. “Halfway time” means here: the half-way-clock-reading of C. C is chosen

in Fig. 3 as reference. C is set as the “zero-mover”. Simply since we measure distances from C. So
in Fig. 3 events are ordered according to C’s coordinates (xC,tC) where C measures its own position
as the vertical (time) axis xC=0 for all tC. Arbitrarily so, for B and D could have been set x=0 with no
less justification, which would give a different perspective.

By transforming the graph from the perspective of C to the perspective of B (from the left to the
right graph in Fig. 4) you actually do the Lorenz-transformation. In such a transformation you shift
to using B’s coordinates (xB,tB) instead of (xC,tC)  (the mathematics is for section 3).
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Fig. 4 

In B’s perspective the world line of B is vertical, since it is now B, instead of C, who zeroed his
position. C and D move rightward relative to B so their world lines go up to the right. The result is
that going from the source coordinate system (left) to the target coordinate system (right), all three
world lines have rotated clockwise compared to the source, in such a way that the relative speed of
C in the target system (that is: the speed vBC of C in B’s measurement) equals the value of vCB  in the
source system, but negative: 

v BC=−vCB

Since vCB is a leftward speed (negative), the speed vBC  of C in the perspective of B (right graph) will be positive.

The light lines of the C’s flash paths shifted to the right but did not rotate! For light speed is the
same under all perspectives, including B’s. Hence though B plots the others as moving at different
angles (speeds),  he plots the tracks of the light flashes at  the same angles of 45o,  as always in
normalized Minkowski diagrams.

What governed the rotation of the world lines to make the right graph of fig. 4? The green numbers
in the graphs in Fig. 5 show the steps of construction: 

1. B’s world line should now be set vertical. Since C’s world line was the former vertical axis, the

result for C is a horizontal flip  ( v BC=−vCB ) : C’s world line now slopes forward with the same

slope as B’s world line sloped up leftward in the previous graph. 
2. starting from the flash-launch-event el, event  eB  should be where the 45o light line from el cuts

through the vertical axis (the world line of B).
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Fig. 5

3  er must be where the light line from eB , with direction 45o , gets back at the world line of C, now
sloping.
4. We know that exactly at event er, the other flash, the flash from D, returned to C as well. This

fixes  eD by completing el –  eB -  er as a rectangle. It should be a rectangle, due to, again, the 45o

slopes of the light lines. Thus after transformation, event  eD should be exactly at the right most
corner of the rectangle constructed.
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5. eD is a point on the world line of D, which should be a straight line (constant speed), hence D’s
world line should be the straight line through orgin O and eD

3)

Going to this new B-perspective on the right side of Fig. 4, C’s flash paths, that form a square in C’s
perspective, get squeezed into a rectangle. This means that in B’s measurement, the light flash from
C that B mirrors travels longer on the way back to C then it did when it went to B, that is, in its first
(leftward) leg, which should be no surprise: from B’s perspective, while the light makes its way
from C to B and back to C, C moves away from B to the right, so the distance for the light to cover
the way back to C is longer. From C’s perspective this was not relevant since C calculates where B’s
mirror was at the moment of reflection. Where that mirror was before and after the reflection does
not matter if you just want to plot the distance at the moment of mirroring, considering yourself at
rest and the mirror as moving. In Fig. 4 right side, event eB, B’s own reflection of C’s flash has an
earlier B-clock-reading  then  eD.  While  (Fig.  4  left  side)  in  C’s  perspective  eB  and  eD  occur
simultaneous. This obviously means C and B have different standards to establish which events are
simultaneous: events simultaneous to C (or C-simultaneous) will not be simultaneous to B. Though
obvious from this example, it will prove the hardest aspect of Lorentz transformation to absorb in
your cerebral  routines,  but  once you succeed,  if  you are like me,  the whole issue will  assume
transparency (section 5).

In our graphical construction, while going from the C-perspective (left graph of Fig. 4) to the B-
perspective (right graph of Fig. 4) the angle between the world lines C and D got visibly smaller, for
same reason: the square got squeezed to a rectangle. This shows that in general calculating relative
speed  vBD can not be done in the way of the hunter’s brain, which is simply adding  vBC and  vCD

(section 7).

There  is  symmetry  over  the  vertical  (time)  axis  in  these  transformations  as  shown  when  you
analogously transform to D (setting D’s time axis vertical) in Fig. 6 below, left graph. It is called γ-
symmetry in the math of this matter, explained in section 3)

3) We graphically construed all except the transformed flash launch spot: event point el . Its place is arbitrary for the conclusions of 
this section: if you move el up and down along the C’s world line (i.e. changing the launch-time), this only changes the size, not the 
aspect ratio of the resulting rectangle, hence would find (at its up-right corner) another point of that same line we construed (green 
number 5 in Fig. 5) as the world-line of D. Where exactly el lands by transforming to the B-perspective comes out easily in section 4 
using the math of the hyperbola that derives from the assumptions graphically made in this section.
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Fig. 6 “γ-symmetry” (math explained below section 3) illustrated

3.  Deriving the equations of the Lorentz transformation.

Fig. 7
Under a transformation as from the left graph to the right graph in Fig. 4, all event-points (xC,tC) ,
where  xC denotes  mover  C’s  distance-reading of  the event  and  tC  is  C’s  clock-reading,  shift  to
another place hence acquire  new, transformed, coordinates (xB,tB).  The transformation equations
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should give us the values (xB,tB), that is, the new position of every event-point in the transformed
graph, as a function of the event point’s old position (xC,tC).
In the perspective of one mover, the world line of another mover will be straight if that mover’s
relative speed v is constant (“uniform motion”). If another mover’s relative speed is increasing or
decreasing, its world line is a non-straight curve (Fig. 7). If we start finding the restrictions that the
transformation  we seek should  satisfy,  one  of  them must  obviously  be  that  uniform motion  is
transformed to uniform motion. That means that straight lines (constant speed) should stay straight
under transformation. Hence transforming from C to B there must at least be fixed parameters α, β,
γ, and δ such that the functions we try to find satisfy

xB=αtC+βxC  , tB=γtC+δxC  

The postulate of the absolute light speed yields further restrictions: the light pulses from the origin
should in C’s perspective have lines  xC  =  tC and  xC  = -  tC.  How does this measure from the B-
perspective? B measures the same absolute light speed c=1, hence  xB  =  tB and  xB  = -  tB.   If the
transformation  should  satisfy  these  requirements,  these  four  equalities  for  light  allow  for  the
elimination two parameters as follows.

First consider the rightward flash from the origin:  xC=tC and xB=tB should hold

In xB=αtC+βxC substitute tB for xB  and tC for xC to get     tB=αtC+ βtC  hence 
tB

tC

=α +β

In tB=γtC+δxC substitute tC for xC to get                            tB=γtC+δtC hence 
tB

tC

=γ +δ

hence γ +δ=α+ β

Second, consider the leftward flash from the origin:  xC=-tC and xB=-tB should hold

In xB=αtC+βxC substitute -tB for xB  and -tC for xC  to get −tB=αtC−βtC hence 
tB

tC

=−α+β

In tB=γtC+δxC substitute -tC  for xC   to get                         tB=γtC−δtC hence 
tB

tC

=γ−δ

hence γ−δ=−α +β

Adding the blue equations yields:   2γ=2β hence β=γ
Subtracting them yields:  2δ=2α hence α=δ

Eliminating α and β yields 

tB=γtC+δxC , xB=δtC+γxC
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Another restriction allows for elimination of δ: C plots B’s time and place (xC,tC ) such that xC / tC  =
vCB. Substitute vCB tC for xC in the right hand (xB-) expression to get:

xB=δtC+γvCB tC

By  definition,  B  plots  its  own  position  for  all  tB  as xB=0,  hence  in  self-plottings

xB=δtC+γvCB tC=0 hence  δ=-γvCB.  That should be in the general rule, for such a general rule

should fit all special cases including this one. Substituting -γvCB for δ, the transformation equations
to find should finally satisfy:

tB=γ (tC−vCB xC)  , xB=γ ( xC−vCB tC )

Now we seem not to have made any progress to specification for we got a new parameter v instead
of  δ so  we  still  have  two  of  them:  γ and  v.  Mathematically,  had  we  run  out  of  restrictions,
transformations would be indeterminable since, though v can be measured, γ is as yet arbitrary and
every choice of a value for  γ  would yield another coordinate system. There would be no way to
single one coordinate system out.
But we still have the requirement that transforming to a positive speed should yield the same time
coordinates as transforming to a negative speed of the same value (as illustrated in the vertical
symmetry of the left and right graph in Fig 6): for movers B and D, if  vCB = – vCD  , as in our
example, the transformation using vCB and the one using vCD should yield the same t-values (and the
negative of the x-values).

This requirement means that if, as in the example of Fig. 6 middle graph, vCB = - vCD even though
vCD  and vCB   have not the same (but each other’s negative) values, transforming to the left and the
right graph should yield (while the x-value changes sign), the same t-values (γ-symmetry):

tD=γ CD(tC−vCD xC) should be equal to t B=γCB (t C−vCB xC )

symmetry should allow for substituting vCD  for vCB

tD=γ CD(tC−vCD xC)=tB=γCB (tC−vCD xC )

Hence in our special case of Fig. 6 γCD and γCB  cannot differ. A trivial implication is this: since for
two movers X and Y always vXY=-vYX, transformation back and forth between the two should have
the same value for γ: 

   always γXY = γYX .

For our specific example (Fig. 6), vBC=-vCB=vCD=-vDC, we now have harvested these equalities: γBC = γCB = γCD = γDC. 



14

The requirement of γ-symmetry fixes the relation between γ and v, and thus allows the elimination
of γ. As follows: consider the t-transformation from B to C

tC=γ BC (tB−vBC xB)

The inverse transformation of t and x from C to B is 

tB=γCB (tC−vCB xC ) , xB=γCB (xC−vCB tC )

nest this last transformation (C to B) in the B-to-C-transformation above it to get a transformation
of tC over tB  back to itself:

tC=γ BC (γCB (tC−vCB xC)−v BC γCB(xC−vCB tC))=γ BC γCB (1+vCB vBC )(tC−
vCB+vBC

1+vCB vBC

xC)

we already found γBC = γCB (γ-symmetry) and vBC=-vCB so we can substitute γCB  for γBC and  -vCB  for
vBC.

tC=γ CB
2

(1−vCB
2

)( tC−
vCB−vCB

1−vCB
2 xC )=γCB

2
(1−vCB

2
)tC

The division-expression is zero. Divide left and right by tC to get

1=γCB
2

(1−vCB
2

) hence γ CB=
1

√1−vCB
2

This  γ-function of  relative speed  v moves up to infinity  with positive and negative speeds  vCB

approaching light speed. 

There are many ways to derive the Lorenz equations. This version, basically existing in the literature is, in my perception, based most
directly on reading the Minkovsky graphs.
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Thus transformation from B to C  depends on only one parameter: vBC. Substituting the expression
in v found for γ in the transformation equations yields the Lorentz transformation :

tC=
tB−v BC xB

√1−vBC
2

 , xC=
x B−vBC t x

√1−vBC
2

  4)

For this derivation we needed no assumptions other than the ones introduced in sections 1. and 2. 5)

4  Classical notation: in the classical derivations in the literature, notation is as follows: source variables are unprimed, target
variables are primed, so instead of suffixes like B, C, D and CB as in xB, tB, vBC, one uses t, t´,t´´, v, v´, v´´, v´´´ etc. Both the primed
the suffixed notation have their strong and weak points. In the classical notation, often speed of light is retained as c such as to allow
units yielding c≠1, which is now known to yield no additional insights in this matter. All in all, In the classical notation, the Lorentz
equations appear thus: 

t '=

t− v
c2

x

√1−
v2

c2

, x '= x−vt

√1−
v2

c2

5  About the method of proof used: In narrowing down the freedom of our transformation equations from the α, β, γ, δ– form to the 
Lorenz-form we consistently took our restrictions from special cases. They were: straight lines should map as straight lines, light 
lines should keep making 45o slopes, the world line of the transformation target mover should become the vertical axis, cases of same
speed reverse movement should satisfy γ-symmetry. Einstein (Relativitätstheorie, 1916) p. 76 uses a similar method to explain the 
Lorentz equations to a general public and writes: “… brauchen wir nur einen bestimmten Wert … ein momentaufname … “. This 
type of method does not prove the absence of further restrictions that might turn the exercise inconsistent and a solution impossible. 
Such proofs should exist, though I failed to find any. A related question is: why “derive” the Lorentz transformation at all? Why not 
praise the inventor and rest on his laurels? As long as theories work without requiring questionable special adaptations to fit the data, 
who cares? A reason yet to do these things it is that the requirements that generate the Lorentz transformation do help to understand 
what the transformation is doing to the physical quantities involved. 
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4. Time dilation: while their coordinates are being transformed, event-points move along fixed
hyperbolas that are clock-reading frontiers  6)

In the example above B,C and D are launched such that B moves leftward from C with the same
constant speed as D moves rightward from C, and C thus remains in the middle between B and D.
There could be an A moving uniformly such that B remains in the middle of A and C, on the other
side  an  E  such  that  D  remains  in  the  middle  of  C  and  E.  And  this  chain  of  even  movers
A,B,C,D,E,F, ... each of them remaining in the middle of its neighbours (vAB=vBC=vCD=vDE=vEF=...)
could be extended indefinitely. Each of those even movers can be set as the reference, the zero
mover with its clock-readings measured vertically, in measuring our example of C’s two flashes
mirrored by B and D. That will result in graphs displaying different A,B,C,D,E, … perspectives, but
all  of  the  very  same  four  flash-events  caused  by  mover  C.  Every  stage  of  the  animation  on
http://asb4.com/relativity/Lorentz-rotation.gif depicts  the  same  flash  operation,  but  from  the
perspective of a different mover in this set …, A,B,C,D,E, ... of even movers. 

In Fig. 8 below the three graphs of Fig. 6 are merged:

Fig. 8

The  striking  feature  looking  Fig.8  or,  even  more  clear:  at  the  animated  graph
http://asb4.com/relativity/  Lorentz  -rotation.gif is that the five events  e plotted in the graphs, when
being transformed to set any other mover to zero, each shift over a fixed curve (the grey lines), the

6  See appendix for the basic math of the hyperbola.

http://asb4.com/relativity/Lorentz-rotation.gif
http://asb4.com/relativity/Lorentz-rotation.gif
http://asb4.com/relativity/Lorentz-rotation.gif
http://asb4.com/relativity/Lorentz-rotation.gif
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equations of which are, in fact, elementary hyperbolas. To derive them, transform, for instance,  tB

to tC
 (transforming from right to left in Fig. 4). The Lorentz equation reads

tC=
tB−v BC xB

√1−vBC
2

In B’s perspective, the equation of C’s world line is xB = vBC tB . To transform that world line to C’s
perspective substitute vBC tB for xB  to get C’s time scale in terms of B’s time scale.

tC=tB √1−vBC
2

This transforms B’s clock-reading tB of all events e on C’s sloped world line into C’s clock-reading
of that same event. The difference between these readings is known as time dilation. Since -1<v<1 ,
in the B-perspective, C’s clock runs slower than B’s and hence reads earlier than B’s (tC<tB). 

Consider the clock-reading  tC,  the one that is retraced by C for event  e1/2, and label it  tC=τ:  the
equation transforming to value τ from the B- to the C-perspective is:

τ=tB √1−vBC
2

Now we return to the B-perspective (Fig. 9 below) and ask: what value tB should B read on its clock
for the away-event e1/2 where C’s clock reads τ? Solve for tB:

tB=τ /√1−v BC
2

This plots, in the B-perspective, B’s home clock-reading of the event  equitemporal (happening at
the same time, simultaneous) to C’s home clock-reading event  τ.  -1<v<1.  B’s clock points  later
than τ.

Equation tB=τ /√1−v BC
2 finds the B’s clock-reading for the remote event where C’s clock reads

τ. But  since  it  depends  solely  on  vBC ,  generalized  to  movers  X  at  all  speeds  -1<vBX<1  as

tB=τ /√1−v BX
2  you have the general relation between tB and vBX . By substituting xB/tB  for vBX ,

where xB and  tB  can now have any value, you see it is a hyperbola 7): 

τ=tB √1−(
xB

tB

)

2

 hence  (squaring left and right) tB
2
−xB

2
=τ2

This shows as in Fig. 9 (B-perspective):

7) See appendix for the basic math of the hyperbola
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Fig. 9

On this hyperbola tB
2
−xB

2
=τ2  (blue in Fig. 9), where xB = 0 you are at the vertical axis, on the

world line of B and B’s clock reads τ. In event e1/2, C’s clock reads τ. This event has, from the B-

perspective, coordinates xB=vBC τ /√1−vBC
2  and tB=τ /√1−v BC

2 . That is a clock-reading later

than τ. Generally, looking at this graph, C’s world-line and thus its time grid is stretched compared
to  B’s.  Movers  X  with  other  speeds  relative  to  B:  -1<vBX<1  have  their  world-lines  stretched
similarly  and all  read  τ on their  clock in  the event  (at  the event-point)  where their  world line

intersects with hyperbola tB
2
−xB

2
=τ2 . For any mover X with speed  v relative to B, B’s clock-

reading of the event where X’s clock reads τ depends on vBX only, and will be tB=τ /√1−v BX
2 .

We have arbitrarily set, as an example, τ as the time of e1/2 as being read by C (on C’s clock), which
plots out the blue hyperbola. The three grey hyperbolas in Fig. 9 are, read from down upward, the

one having el, the one shared by eB and eD, and the one of er. Generally: a higher (lower) value τ will

produce a higher (lower) hyperbola tB
2
−xB

2
=τ2

Wherever you are on the blue hyperbola τ, you will always be at the event-point where the mover of
the world line cutting through it exactly there, will read there τ on his clock. Inversely, it plots all
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positions that e
1/2

 can get by applying all possible transformations -1<vXY<1. Thus Fig. 9 the blue

hyperbola  is  also  the  one  over  which  e1/2 moves  if  transformed  (see  animated  graph
http://asb4.com/relativity/Lorentz-rotation.gif).  The  hyperbola  itself  does  not  move  under
transformations. Transformations only move event-points along their fixed hyperbola, that is, in this
example, the curve representing everybody’s home-clock-reading  τ.

So a hyperbola t2
−x2

=τ for some τ is the clock-reading frontier τ. Under the curve t2
−x2

=τ

where  t2
−x2

<τ all movers’ clock-positions point  before τ,  above it ( t2
−x2

> τ ), all mover’s
clock-positions point  after τ.  When you transform, all  these clock-position  τ  event-points of all

movers shift strictly over t2
−x2

=τ . 

This means that in Fig. 9 you see how, in the coordinates of the B-perspective, the time-grids of
other movers, the distance between successive intersections of their world-line with the hyperbola’s,
stretch with speed. The time-grid is given by the distance between the marks of the “ticks” . This
distance is larger with objects moving faster relative to B. Those marks follow the hyperbolas and,
in B’s coordinates (!) assume a wider distance for movers with speeds higher relative to B. 

But you can transform to the coordinates of any such mover. Setting another world line vertical will
result in rotating B’s world line thus stretching B’s time-grid in the same way. (see it happen again
in the animated graph http://asb4.com/relativity/Lorentz-rotation.gif)

5. What happens “at the same time” is not the same for different movers

But same clock-reading and same time have become different things.

Keep in mind we are still considering leftward and rightward movements on one single line. 

Our hunter’s brain tempts us into wrongly thinking like this: at every point in time things happen on
that  line,  so a  little  later  something else  may happen,  a  little  earlier  something else  may have
happened. But this wrongly ignores that different movers like B and C differ in their perception of
which events happen at the same time (simultaneity) and which ones do not. Two events that happen
at the same time if measured from the C-perspective, do not come out as happening at the same time
if measured from the B-perspective. Each of them singles out a different set of events (a differently
sloped straight line of points in the graph) as happening “at the same time”. This, for a hunter, is a
rather difficult thought-step to make.

http://asb4.com/relativity/Lorentz-rotation.gif
http://asb4.com/relativity/Lorentz-rotation.gif
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Fig. 10

In C’s perspective (Fig. 10 left graph), the flash-mirroring events eB and eD occur at the same time,
and so do all other events on the horizontal borderline between the colours cutting through eB and

eD , including e
1/2

. In the C-perspective, events in the blue happen earlier, those in the pink happen

later. The transformation to the right graph reshuffles all events. For these C-simultaneous events
the result is that their line has rotated counterclockwise and now slopes up. The line still connects
the points of events that occur at the same time from C’s perspective, but these events all got a new
position.  And  what  has  not  changed  while  transforming  to  the  right  graph  is  this:  in  the  C-
perspective, events in the blue – and those are the same events that are in the blue at the left side,
they have just been reshuffled in the graph! - are still the ones that happen earlier according to C,
those in the pink happen later  according to C. In the right graph, however, it is B who measures
simultaneity  horizontally,  and  C’s  simultaneity  line  is  no  longer  horizontal.  Hence,  in  the  B-
perspective the events on that upward sloping line of C-simultaneous events are not simultaneous.
This is the result of the relative movement of B and C.
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Fig. 11

This needs some effort to sink in. And it is crucial. The best exercise is to put equitemporal (or
“simultaneity”- or “same time”-)  lines of both B and C in in both graphs (Fig. 11). In the left graph
the downward sloping borderline of colours is the B-simultaneity in the C-perspective. It becomes
horizontal by transformation to the B-perspective (resulting in the right graph).

Transformation (left to right) is a reshuffling of all event-points. Events now are four-colour-tagged
so we can see where they land after being reshuffled in the graph by transformation, choosing, as an
arbitrary example, event e½ as the reference (that is why all colours meet at e½ both in the left and in
the right graph):
pink: events later than event e1/2 both from C’s and from B’s perspective
dark blue: events earlier than event e1/2 both from C’s and from B’s perspective
purple: events later than event e1/2 from C’s but earlier than event e1/2  from B’s perspective
light blue: events earlier than event e1/2 from C’s but later than event e1/2  from B’s perspective

Here we took  e
1/2

 as the fixed event from which to analyze, but we could have done the same

exercise using any other fixed event (of course with different outcome). 

6. The math of the equitemporal lines, how they rotate under transformation

In a graph of the C-perspective you find all events C-simultaneous to  e1/2 on the horizontal line
through e1/2.  To find them in another perspective, like that of B (Fig.12), label again as τ C’s clock-
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reading at  e1/2. If  τ should result from a transformation of time coordinates from B to C then B’s
source coordinates xB,tB should satisfy 

τ=
tB−v BC xB

√1−vB
2

with τ  and vBC  fixed, this makes a sloped line of points (xB,tB) in the B-graph

v BC xB=tB−τ √1−vBC
2

It  is a straight line with slope 1/vBC (relative to the vertical  axis) and constant  τ √1−v BC
2 . This

constant  is  such  that,  where  xB=0,  the  line  cuts  through  the  vertical  axis  at  B-clock-reading

tB=τ √1−vBC
2 (that is at event eB ).

Fig. 12

This green sloped straight line in Fig. 12 is the same as the green lines in all previous graphs.  It
plots all B-coordinates xB,tB that give time τ if transformed to the C-perspective. It is, we can now

prove,  the tangent of hyperbola tB
2
−xB

2
=τ at event e1/2: the local derivative of tB

2
−xB

2
=τ at its

intersection with world line xB=vBCtB indeed has slope  1/vBC. 
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Proof: write t2
−x2

=τ as a function of t: x=±√t 2−τ2 . Take the positive side, apply chain rule
of derivation:

dx
dt

=
d √ t2

−τ2

dt
=

d( t2
−τ2

)
1 /2

d ( t2
−τ2

)
⋅

d (t2
−τ2

)

dt
=

1
2
(t2

−τ2
)
−1 /2

⋅2=t /√t 2
−τ 2

With our B-perspective’s subscripts this reads:

dxB /dtB=tB/√ tB
2
−τ2

We need  the  value  for  dxB/dtB at  e1/2,  where  (see  section  4),  tB=τ /√1−v BC
2 .  Substitute  this

expression for tB in tB/√ tB
2
−τ2 to get, indeed, the slope 1/vBC:

dx
dt

=

τ

√1−vBC
2

√ τ2

1−v BC
2 −τ2

=
1

vBC

Both numerator and denominator have factors τ, canceling each other out. The remaining expression, in v only, simplifies to 1/v.
Hence for every mover v, the equitemporal lines of at the event-points of different clock-readings are always parallel so cannot
intersect.

This  helps  to  physically  understand  the  rotation  of  the  equitemporal  lines:  the  line  of  C-
equitemporal events, sloping if plotted in the B-perspective, turns out to be the tangent of the clock-

reading frontier tB
2
−xB

2
=τ at the point where it intersects with C’s world line (xB=vBCtB). At that

point  the  clock-reading frontier  and the  C-equitemporal  line  in  B’s  perspective  have  the  same
direction/slope  1/v (measured  from  the  vertical  axis).  Now  focus  on  the  zeroed  mover:  its
equitemporal line is horizontal by definition. Thus a zeroed mover looking at neighbours with the
clock-positions closest to his own will look, in its “own” graph, in horizontal direction. But a mover
at  another speed will  find those equitemporal neighbours  along the local  tangent of  the clock-
reading frontier. For mover C this is the green line in Fig. 12, which hence represents the local
simultaneity at the event e1/2  we chose to focus on: the set of events locally measured as happening
at the same time.  That tangent rotates when you leave event e1/2 to move along the concave clock-
reading frontier. 

The green line in Fig. 12 shows, in the B-perspective, the set of all event-points that in the C-
perspective are measured as happening simultaneously with event e1/2. 

This means that eB and eD happen at the same time in the C-perspective, while in the B-perspective eB happens earlier than eD.

The straight C-equitemporal borderlines between the pink and blue areas in the right graph of Fig. 10 are described by the same

equation vBC xB=tB−τ √1−vBC
2
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Since vBC = - vCB , thus vBC
2 =vCB

2 the C-equitemporal line be written with vCB as well as with vBC.

The case vBC = 0, hence tB = τ  is the special case where C would be with B (not move relative to B)
and the line would be horizontal.

Conclusion: consider in the B-perspective the event where C’s clock reads τ. The set of events that
C measures as happening at the same time as τ, is a straight line with, in the B-perspective, slope
1/vBC (measured from the vertical  axis).  The slopes of all  those straight lines (for all  τ)  are all
parallel to one other.

Those parallel straight lines are mover C’s equitemporal lines of all his home clock-reading events. They show how C times events.

If you consider ever larger relative speeds vBC, the speed approaches light speed (v → c=1). Hence
the slope 1/v rotates up (counterclockwise) to a limit 1/v → 1 . 

See  the  rotation process happen again  in  the  animated  graph  http://asb4.com/relativity/Lorentz-
rotation.gif). This time focus on the rotation of the green diagonals in the red rectangles: they are
sections of equitemporal lines. 8)

What, for some mover, is the exact slope of the line cutting through all points of events happening
at the same time depends only on the speed of that mover relative to the zeroed mover: if you set
yourself  as  the  “zeroed-mover”  and plot  your  own time  on the  vertical  axis,  the  line  of  your
simultaneous events is horizontal. If you zero a mover different from yourself with different speed,
your equitemporal line will, if you now have become a relative rightward mover, be rotated counter
clockwise (and clockwise if relative to the zeroed mover you move leftward). The events that your
rotated line identify as simultaneous will be exactly the same events as they are under all other
rotations, since these rotated exactly with that line. Relative to the mover now zeroed, these events
are not simultaneous, nor will they under any transformation as long as there is a non-zero relative
speed.

7. You can’t perfectly compound speeds by adding them. The error gets nasty at speeds in the
order of light speed

Let there be three movers B,C,D. We seek to know the error made by adding speeds as in vBD  = vBC

+ vCD  , as our human hunting genes cause our brains to do (example section 1). We seek to know
how the speed vBD=xBD / tBD  relates to vBC  = xBC / tBC  and vCD  = xCD / tCD  . The expression xCD  denotes
distance of D in the perspective of C, we now have to double-index variables x and t in expressions
like “xCD”, since we will now encounter more than one nonzero mover in more than one perspective.

8)   For more complicated issues usually matrix notation is applied to transformations, which also makes for a smooth transition from
movements along one line, as we analyze here, to movements in three space-dimensions.

http://asb4.com/relativity/Lorentz-rotation.gif
http://asb4.com/relativity/Lorentz-rotation.gif
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To correctly find vBD  by compounding the speeds vBC and vCD , start with the Lorentz transformation
from C to B, but only for C’s world line of D, that is only for source coordinates xCD , tCD :

xBD=
xCD−vCB tCD

√1−vCB
2

, tBD=
tCD−vCB xCD

√1−vCB
2

Substitute these expressions for xBD  and tBD  in the formula  vBD=xBD  /  tBD  of the speed we seek to
know:

v BD=
xBD

tBD

=
xCD−vCB tCD

tCD−vCB xCD

substitute – vBC for vCB to get

v BD=
xCD+vBC tC

tCD+vBC xC

divide numerator and denominator by tCD  to get

v BD=

xCD

tCD

+vBC

1+
xCD

tCD

v BC

Substitute vCD for xCD / tCD

v BD=
vBC+vCD

1+v BC vCD

This is flawless compounding of speeds. If you approximate this by simply adding the speeds as in

vBD = vBC + vCD , you round 1+v BC vCD to 1 (one). 

The percentage overestimate of vBD of assuming 1+v BC vCD=0 is thoroughly irrelevant for the chances of the hunter to a hit in the

buck-hunting case where B is a sitting spectator, C is a running hunter and D is a buck speeding away from the hunter: A  good
hunter’s sprinting speed relative to the spectator is something like 35 km/h. A good buck’s sprinting speed relative to the spectator
should be 60km/h  , in the units used (light speed= 299 792 458 km/sec is set to 1 (one)) the correct speed resulting is 
0,0000000555555555555555 
and the approximation by the hunter’s addition is
0,0000000555555555555556
the difference can just be caught by the last digit of an ordinary computer’s spreadsheet capacity. That is, in the unit 299 792 458 
km/sec. You can forget seeing on a home PC screen an error ratio other than loads of nothing but zeros, or a non zero difference if 
you calculate in the units of km/sec let alone in m/sec.
It is not even among the worst of error risks if you’re determined – I never tried - to hit Pluto (speed 17000 km/h relative to the sun at
5.5 light hours), but if you absolutely want to hit it the first shot and you control more serious sources of error I could imagine you 
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may consider to respect it. I did not even read of a case where the calculation is used for launching missiles in our solar system. 
But Fig. 4 assumes speeds that illustrate the issue: in the right graph the angle between the world lines of C and D is visibly smaller 
than that between B and C, though they were equal in the left graph. This is because in transforming from C to another mover, C’s 
light square gets squeezed to a rectangle due to the 45o  requirement to the red lines. And the resulting squeeze determines the new 
positions of the three world lines. If you put a protractor on the right graph Fig 4, the angle of C to B’s vertical axis measures about 
20o, so vBC= tg20o =.364. The angle between B and D’ world lines is 33o,  vBD= tg33o =.649. In this example we graphically 
constructed the case where C is in the middle of B and D: in the left graph of Fig. 4 : vBC= -vCB= tg20o =.364. Adding those would 
yield vBD= .728. That makes a 12% overestimate. What that error could cost you in money depends on your plans.

Another conclusion from the proper compounding of speed is this: since -1<vBC<1 and -1<vCD<1,
compound speeds can not exceed the interval -1<vBD<1. So  the limits of infinitely compounding
speeds of ever faster movers are  v = 1 and v = -1.  No speed higher than c=1 or lower than c = -1
can result from properly compounding speeds. Under proper compounding of speed, light speed is
the limit  (see it  being approached, both by leftward and by rightward speeds, in the animation
http://asb4.com/relativity/  Lorentz  -rotation.gif ).  The  famous  “maximum  speed  in  the  universe”
follows directly from the Lorentz transformation.

8. Length contraction: movers measure shorter

The fact, confusing at first, that things when moving relatively to the observer measure shorter than
when not moving, has the same explanation as time dilation (section 4). A 1m bar lying before you
easily measures one meter because you clearly see where the left and the right end are at some point
in  time.  As  soon  as  the  bar  moves  relative  to  you  you’ll  have  a  hard  time  to  determine  the
whereabouts of its two ends at the same point in time, a relativistic experiment you can do on your
desk. Though good to ponder, reality is worse (section 5) than this joke: different movers single out
different sets of events as simultaneous. What do “size” and “length” really mean, given the ways
they are measured? You will need clock-readings to determine simultaneity of plotting both ends of
an object. The Lorentz transformation explains it.

Fig. 13

Let relative speed be like in our previous examples. We have (Fig. 13) graphs like in Fig. 4, only
instead of B and C we have a platform P and a train T. Instead of world-lines of event-points these
two have coloured event-line sections (rear-to-front, left-to-right) that through time each leave as a

http://asb4.com/relativity/Lorentz-rotation.gif
http://asb4.com/relativity/Lorentz-rotation.gif
http://asb4.com/relativity/Lorentz-rotation.gif
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trail a coloured strip, grey for the platform, green for the train. Around t=0, while the train passes
the platform, the strips overlap for a while and this is what Fig. 13 focuses on. The right graph
shows platform P‘s perspective. There, the train’s green strip leans rightward for that is where the
train goes. Left, in the train’s perspective, the platform appears from the right and vanishes to the
left.

The origin is defined as the event where the rear end of the train is at the left end of the platform
and the clocks of both – both positioned at those left ends – are set tP=tT=0.  

Let the length of both platform and train be λ in case the train is standing at the platform. This is
called rest length. T and P will at all times measure that value for their own length, but the Lorentz
equations imply that what they measure for each other’s length depends on their relative speed. In
the left graph, you see at a distance λ from the origin the event point TT, which is the event of the
front end of the train at time tT=0. (“Trains front in the Train’s perspective”). Keep in mind TT is
the  single front end event at  tT=0. The length the train measures for itself will at all other times,
tT≠0, be λ as well. Those measurements are (left graph) of all event points on the entire vertical line
through TT, while we now consider only one of them, the event-point TT at tT=0.

In the train’s perspective, TT must be at  xT=λ (left graph).  In the right graph, at exactly that same
place, in the P-coordinates, xP=λ, you find PP, the event of the right end of the platform at time tP=0.
Where in the right graph is event TT? It should be somewhere, for it is an event, so its coordinates
can be transformed. It is, as shown, up right, at a positive time (calculations next page). This means
P measures event TT (that same event TT that the train – left graph - singles out for measuring the
distance of its own front end) as taking place well after the moment the train’s rear end passed the
origin. Now switch to the train’s perspective. From there, the platform, while correctly plotting on
t=0 the rear-end of the train as  x=0, by singling out event PT to measure the train’s front-end-
distance, measures  too early,  hence the train too short. And this short story could be told in the
reverse for TP. The measurement differences between the two movers are symmetrical.

In  the  right  graph,  the  line  of  events  P-simultaneous  to  tP=0 is  horizontal  and  the  line  of  T-
simultaneous events slopes up.  Similarly, in T-perspective of the left graph the line of event P-
simultaneous  to  tT=0  slopes  down.  Those  slopes cause  the  difference  between  the  length
measurements of the two movers.  In the right graph, the line of T-simultaneous events slopes up
with an angle of 1/vPT relative to the vertical axis, as we derived in section 6. 

This is how to calculate the difference in measured length:  the Lorentz equation for transforming
distance from right to left in Fig. 13 reads

xT=(xP−v PT t P)/√1−vPT
2

In particular, event TT should acquire as its xT-coordinate: λ, the train’s own perception of its length.
At  tT=tP=0,  the  target-coordinate  of  this  transformation,  xT,  should  equal  λ. Hence  the  source
coordinate of this transformation on the Platform side, (xP,tP)=(xP,0), should satisfy :

λ=xP/√1−vPT
2
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which fixes  xP, the length of the train in the platform’s grid (right graph). This means that in the
right  graph the length  xP of the train in the platform’s perspective, O-PT, must be shorter than  λ,

equal xP= λ√1−v PT
2 as the white balloon pointing at PT in the right graph indicates. 

“Length contraction” actually is a pretty misleading term for a measurement result difference due to
relative  speed.  Different  distance  perspectives  arise  because  relative  speed  causes  a  difference
between the movers in the timing of events. While we faithfully stick to the age old principle that
length of moving objects is measured back-to-front  at the same time, we found that two movers
differ in singling out the front-events simultaneous to some back-event. Both “contractions” (TT to
TP and PP to PT) can be seen in both graphs, left and right. Only the other side’s numerical values
can  not  be  read  at  the  axes.  To  get  them  you  need  to  Lorentz-transform.  Nothing  contracts.
Measurement results differ. My side’s meters are longer, my seconds last shorter than the other
side’s in my measurement. Same for him. As long we move relatively to each other. That is all. Wish
they told me right away.

In sum: 4 event-points (TT, TP, PP and PT) have 2 coordinates (x,t) in 2 perspectives. That makes
16 values. Applying the Lorentz equations between them results in the table below (check them
each in Fig. 13).

Event (x,t) in T-perspective
(left graph)

(x,t) in P-perspective
(right graph)

TT    λ , 0 λ /√1−v2 , vλ /√1−v2

TP λ√1−v2 , 0    λ , vλ 

PP λ /√1−v2 , −vλ /√1−v2    λ , 0

PT    λ , -vλ λ√1−v2 , 0

In both graphs, events PP and TT are on the hyperbola  x2
−t2

=λ2 (substitute the table values).

That math is done for time t2
−x2

=τ2 (section 4), you only have to mirror t2
−x2

=τ2 over the
45o line x=t (see appendix on the math of the hyperbola – we just use λ instead of τ just to remember

we are now talking distance instead of time). Thus  x2
−t2

=λ2  is the distance analogon of the
clock-reading  frontier  (section  4):  the  frontier  of  equal  distance-reading.  From  the  origin,  all

movers read distance λ on hyperbola x2
−t2

=λ2 .

Finally focus on one such mover, and consider its distance measurements not only from the origin,
at t=0, but at every point in time: the platform (as seen on both graphs of Fig.13, but easiest on the
right side) will measure λ for its own length at all times as the width of the vertical grey strip, and,

at all times  λ√1−v2 , less than  λ, for the train’s length, for the back and the front of the train
move together in uniform motion, so in the right graph the green strip while going up to the right
does not change width. All the same the other way: neither does in the left graph the grey strip
change width while receding . 

You got it.
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Appendix: math of the basic hyperbolas involved

A hyperbola of the type we used is a curve, a
set  of  points  in  a  flat  plane.  It  has  many
equivalent  properties  that  can  be  used  as  its
definition.  Here  we  choose  the  property  of
being a  “conflict  line”:  set  of  points  that  all
have the same distance to  a  given point  and
circle. Our point is F1, our circle has centre F2

and radius r.

This  appendix  shows  this  means  that  the
hyperbolas featuring in Lorentz transformation

are of type t2
−x2

=τ2

This is for time. When dealing with distance, time t and distance x swap position, which yields a flip (mirroring)
over the x=t axis, as we shall see.

Fig.  15  is  made  out  of  Fig.  14  by
drawing a circle with same radius  r
around F1 as  well,  and installing an
orthogonal  grid  using  as  the  x-axis
the  straight  line  through  the  two
intersection  points  of  circles.  The
straight line F1F2 serves as t-axis. We
can now baptize the  t-coordinate  of
F1 as φ and  the  minimum  of  the
hyperbola  curve  as  τ.  And  we  can
draw  the  downward  mirror  of  the
hyperbola  curve:  its  maximum
should be -τ . 

Given  the  way  the  hyperbola  is
defined, the distance of point (0,τ) to
F1 should be equal to its distance to
the circumference of the circle around F2.  Mutatus mutandi for (0,-τ). Hence the 4
distances marked with green double pointing arrows should all equal φ-τ.

Consider the t-axis section from the down-point (0,-τ) to the up-point (0,τ). Its length
equals  2τ. Since the green subsections are all equally long, if you shift that entire
section one green arrow up until the up-point is at F1 and the down-point will exactly
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reach the circumference of circle F1. Similarly if you shift the section down to F2.
Hence, for the radius of both circles:  r=2τ.

According to the definition of the hyperbola, the distance of any point P (x,t) on the

hyperbola to F1: √(φ−t)2+x2 should be equal to distance of P to Q.  To get distance

P to Q: the entire distance P to F2 is √(φ+ t)2
+x2 . Subtract the section F2Q of this

distance that forms the radius r=2τ of the circle. So the distance between P and Q is

√(φ+ t)2
+x2 - 2τ

Hence the definition implies:

√(φ−t)2+x2=√(φ+t)2+x2−2 τ

Let us call this the hyperbolic requirement.
The rest is algebra. We have to prove that, if the hyperbola’s asymptotes have 45o

slopes,  hence  x=±t as  in  our  special  Lorentz  case  of  absolute  speed of  light,  the

hyperbolic requirement will simplify to t2
−x2

=τ2 .

Proof:

The hyperbolic requirement is

√(φ−t)2
+x2

=√(φ+t)2
+x2

−2 τ square to get

(φ−t)2+ x2=(φ+t)2+x 2−4 τ √(φ+t)2+x 2+ 4 τ2

φ2
−2φt+ t2

+ x2
=φ2

+2φt +t2
+x2

−4 τ√(φ+ t)2
+x2

+4 τ2

0=4 φt−4 τ √(φ+t )2+x2
+4 τ2

τ √(φ+t)2
+x2

=φt+τ2 square again to get

τ2
((φ+ t)2

+x2
)=(φt +τ 2

)
2

τ2
(φ2

+2 φt+t 2
+x2

)=φ2 t2
+2φtτ2

+τ 4

φ2 τ2
+2φtτ 2

+t 2 τ2
+x2 τ 2

=φ2 t2
+2 φtτ2

+τ4

φ2 τ2
+ t2 τ 2

+x2 τ2
=φ2 t2

+τ 4

τ2
(φ2

−τ 2
)=t2

(φ2
−τ 2

)− x2 τ2

τ2
=t2

−
x2 τ 2

φ2
−τ2

t 2

τ2 −
x2

φ2
−τ 2=1

Asymptotes: use again

τ2
(φ2

−τ 2
)=t 2

(φ2
−τ2

)−x2 τ2 move all  x-  and  t-factors  left  and expressions  with

only parameters to the right

t2
(φ2

−τ2
)−τ2 x2

=τ2
(φ2

−τ2
) divide by t2:
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φ2−τ2−τ2(x /t )2=
τ2

(φ2
−τ2

)

t2

Now check  t to  infinity:  we  made  the  right  side  so  as  to  have  only  parameters
(constants) in the numerator so it will get zero. So the left side should go to zero as
well. In that limit 

φ2
−τ2

−τ2
(x /t )2

=0

x / t=±(φ−τ )/τ

In case of 45o asymptotes through the origin as made by the Minkowski light lines
x=t hence x/t=1:

x / t=±(φ−τ )/τ=1  

φ=±2 τ hence φ2
=2 τ2

φ2
=2 τ2  is a special case where t 2

τ2 −
x2

φ2
−τ 2=1 simplifies to

t2
−x2

=τ2

In dealing with lengths λ the variables x and t
swap positions and the whole shit flips over the
x=t line (45o line)

x2
−t2

=λ2

See  Fig.  16.  If  needs  be  to  get  the  point,  practice  flipping
(mirroring) the graph of  y=x2 over the 45o x=y-line  to draw
x=y2 while keeping the x- and y-axis on their places.

There you go.


