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Bert1 reads Einstein

Special Relativity Part 1 (/2)
Doing the Math

1.  Where finiteness  of  light  speed matters,  applying  Newton
leads to serious errors 

In cases where the finiteness of light speed does not matter,
Newton can be applied to analyze objects passing at different
speeds  v.  We  can  for  instance  treat  two  trains  driving  at
constant speed, hence using energy only to offset friction, like
bodies in uniform motion.

Fig. 1
The  trains  in  Fig.  1 have  equal  lengths  that  we  set  as  the
distance unit. As time unit υ we set the time the red high speed
train h needs to make good its own length, so h has speed v=1
υmsec-1. The green local train has half the speed which thus is
v=½υmsec-1. We set t=0 where the front of h and the back of l
just arrive at Post B. That event is drawn by the solid red and
green rectangles. Then at t=2 the situation will be as drawn by
the  dotted  rectangles.  Timing  of  the  speed  of  h passing  l,

1 Freeware pdf.  This is the “self-summary” of my study.  I  used Einstein,  A.,  Uber die
spezielle  und  die  allgemeine  Relativitätstheorie,  Braunschweig:  Vieweg  1956,  and
Utrecht  University's  fall  2015  physics  and  astronomy  bachelor's  course  in  special
relativity by Prof. Stefan Vandoren. About me: http://asb4.com/aboutme.html
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whether you time from h, from l and from Post B, it all gives
½υsec , the speed of h minus the speed of l. No problems (they
will come!).
Fig 2 depicts  this in a space-
time  diagram.The  lines
represent  the  front  points  of
the trains. Event   e0 is that of
the front of  h being at post  B,
event  e4 is  that  of  the  front
ends  being  together  at  2υm.
Line  h is  45o since  vh   is  set
one.
This  introduces  the  important
notion of an event e. Note that
an event i “is” not a pair (t,x). It has a pair (t,x). For instance
event  1,  e1,  has (t,x)=(0,1).  Coordinates  are  properties of
events.

Fig. 3

In  Fig.  3  we  are  in  space.  It  is  an  area  remote  from mass
concentrations and magnetic  sources.  Post  B is  now a space
base,  S (green)  is  a  shuttle.  Neither  is  using  propulsion,  so
regard themselves for al practical purposes in uniform motion.
S passes B with a relative speed equal to half the speed of light
= ½c (c=299,792,458 msec-1).. A light pulse, shot by  B at the
event of the rear of the shuttle being at the post, is substituted
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for the highspeed train. Both S and B set time and distance zero
at that event. 
From there and then, the light pulse goes on its way to overtake
the shuttle and reach its front point. But where and when? Even
now we have no rail  there is an unambiguous answer but it
requires Lorentz transformation and all the physical arguments
that Einstein produced to start using it for general space-time
measurement.

Here's why: you would expect S to measure the pulse passing
with 1/2c, after  all,  its own speed relative to the “gun”  B is
1/2c. But S measures 299,792,458 msec-1. And that is not just
in this example:  all movers along the line of  any light pulse,
slow and fast,  going the same way or in  opposite  direction,
measure 299,792,458 msec-1.

Well,  light is often thought of as kind of a wave too, which
reminds of “speed of sound” thinking. There, for the speed of
the  sound  pulse,  the  speed  of  the  pulse  generator  does  not
matter  -  but  the  speed  of  the  detector  does.  In  the  case  of
measuring light speed not only the speed of the generator is
irrelevant  but  that  of  detector  is  irrelevant  too!  With  sound
waves, the medium determines the speed of propagation. But
unlike  sound  waves,  light  is  not  a  medium-thing.  There's
nothing there.  Light does a Doppler  effect  but that  does not
affect light speed. The only thing we have, relative speed of
source and detector, does not yield any measured light  speed
differences. Both measure that same 299,792,458 msec-1. Odd
but true. Weird stuff, light.

2. How to accept light as it is?

In 1905 Einstein published the first article on how to accept
light as it is. If light speed is the same for any two uniformly
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moving objects,  then they must  measure each other's  meters
and seconds as of different length. This would allow for the
numerical value of the light's meters-per-second being the same
among all movers, while the difference in meters and seconds
between two moving systems could account for their relative
speed.  So  “home-”  meters  and  seconds  must  differ  from
“away-” meters and seconds. 

In a single case such a thing can easily be forged. You could let
meters  differ,  or  the  seconds,  or  a  combination.  If  that's  all
allowed, you will have infinite ways to make light speed equal
in two systems. But! There are requirements:

Requirements for transformation:
(i) proportionality under v : Under the transformation, at some
constant  (uniform)  relative  speed  v,  times  and  distances
measured from B and S no longer need to be the same, as under
Newton, but should have a  fixed ratio, only depending on  v,
both  if  B and  if  S do  measurements  in  the  two  possible
directions on the line of their relative movement.

Proportionality under v  can be generalised from one to three
distance  dimensions.  But  we  turn  out  able  first  to  find  the
transformation and do that generalisation only afterwards.

(ii) symmetry:  The  transformation  should  yield  exactly  the
same result  if  you swap the labels  B and  S (or  ¨home¨ and
¨away¨) for there is no way to choose between the swapped
result and the original one.

These two requirements define a purely mathematical problem:
there could be no such transformation, or there could be many.
Or, as Einstein following Lorentz proved mathematically, there
is only one: the Lorentz transformation.
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3. Doing the math of the Lorentz transformation

Fifty years later, in 1956, Einstein2† could explain the math of
his line of thought much easier to himself and others than in his
first  expositions,  and  probably  rarely  got  back  to  his  first
cumbersome versions. 

Post  B (Fig.  3)  measures  the  speed  of  the  light  pulse  it
generates when S passes as

c=
xB

tB (=3x108msec-1) 

  xB −ct B
=0 (1)

Our  math  assignment  requires  that,  measured  from  S,  light
speed is the same c:

xS −ct S
=0 (2)

For light travelling in the opposite direction (NOT, as you read
in  Einstein  (1956)  ”längs  der  negative  X-Achse  sich
fortplantzenden Lichtstralen”†) speed is minus c

x
t
=− c (3)

(3)   xB
+ctB

=0 (4)
(3)   xS

+ct S
=0 (5)

For this math exercise, our assignment is to stay in the single
dimension of the line on which  B and  S move away from (or
towards) each other. So we analyse light speed in those same
two directions (Fig. 3) and thus (1)(2)(4)(5) is all we consider
as far as directions are concerned.
(1)(2)    There is a λ such that ( xB −ct B )=λ ( xS− ct S ) (6)
Similarly:
(4)(5)    There is a μ such that ( xB+ctB )=μ ( xS+ct S ) (7)

2 Einstein, A., Uber die spezielle und die allgemeine Relativitätstheorie, 
Braunschweig: Vieweg 1956
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(6) and (7) are weaker than their respective origins (1)(2) and
(4)(5): they are necessary but not sufficient for their origins to
hold simultaneously
We define a and b:

a :=
λ+μ

2
   b :=

λ − μ
2

(8a)(8b)

(6)(7)(8)   xS
=axB −bctB  (see Lorentz workouts) (9)

(6)(7)(8)   ctS
=act B −bxB (see Lorentz workouts)           (10)

Parameters a and b can be expressed in λ and μ (8),  λ and μ are
set usiing (6)(7) by (c, xB, tB, xS , tS).
So we can substitute all four, λ, μ, a and b, in the six-equation
set (6)(7)(8a)(8b)(9)(10) and get a two-equation set without λ,
μ, a and b,, that is, with only (c, xB, tB, xS , tS). For mathematical
convenience we define a sixth variable, dependent on the other
five (c, xB, tB, xS , tS):

v=
b
a

c (see Lorentz workouts)    (11)

(which by happy coincidence neatly shall denote the  relative
speed of S and B once after having done the math our pure
math variables will start to refer again to physical quantities,
see Lorentz workout (11)).

Define, for events ei and ej

Δ xe
S :=x i

S − x j
S Δ xe

B :=x i
B − x j

B

Proportionality under v (section 2)  

For all i [ Δ x i
S

Δ x i
B is the same]             (12)

(remember we consider only events  ei on the line on which  S
and B move away from each other)
Restriction (12) enables us to derive that ratio, fixed under  v,
from any position.   
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Measuring from B ...

Any position!  That  considerably simplifies the math:  we can
choose  an  easy  time-point  for  B to  derive  a  distance.  tB=0
obviously is such an easy one:

(9)(tB=0)   xS
=axB                  (13)

(12)(13)   For all i [ Δxi
B

Δxi
S
=

1
a ]                (14)

Under (14),  when a≠1, S-meters are no longer B-meters. 

Measuring from S ...

The easiest time-point for S to measure distance is  tS=0: 

(10)(tS=0)    actB
=bxB   tB

=
b
ac

xB

(15)

(15)(9)   xS
=axB

+bc
b
ac

xB 

 xS=a(1+
1
a

bc
b
ac )x B 

 xS
=a(1+

b2

a2 ) xB 

 xS
=a(1+

b2 c2

a2

1
c2 ) xB 

 with (11) xS
=a(1+

v2

c2 ) xB
              (16)
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(12)(16)   For all i [ Δxi
S

Δx i
B =a (1+

v2

c2 )]             (17)

Symmetry  (section  2) requires  the  transformation  to  be  such
that if you swap  S and  B  consistently in the entire story, the
result  should  be  the  same.  Hence  another  condition  for  our
transformation is:

(14)(17)(symmetry requirement)   1
a
=a(1+

v2

c2 ) 

 
a=√

1

1 −
v2

c2

            (18)

(11)   a=
bc
v

         (19)

(18)(19)  
bc
v

=√
1

1−
v2

c2

  

   
b=

v
c √

1

1 −
v2

c2

=√
1

c2

v2 (1−
v2

c2 )  

 
b=√

1

c2

v2 − 1
           (20)

(9)(18)(20)  
xS=x B

√
1

c2

v2 −1

− ct √
1

c2

v2 −1
           (21)
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(10)(18)(20)
xS

=x B

√
1

1−
v2

c2

− ct √
1

c2

v2 −1
           (22)

(21) and (22) form the Lorentz transformation.

It usually is presented by defining  γ:

γ :=√
1

1−
v2

c2

           (23)

then the Lorentz transformation reads:

(21)(23)   xS
=γ ( xB − vtB ) (see Lorentz workouts)   (24)

(22)(23)   t S=γ ( tB−
v

c2
xB) (see Lorentz workouts)   (25)

4. Back to physics

The  Lorentz  transformation  thus  is  proven  to  be  the  only
transformation  satisfying  the  requirements  of  section  2,
proportionality  under  v  and symmetry.  It  implies  that  away-
meters  are  smaller  than  home-meters  en  away-seconds  last
longer than home seconds.  We made the transformation for
B=home and S=away. Yet it is a neutral account. The only thing
to  choose  is  what  to  take  as  the  “home”  or  unit  side.  This
choice is arbitrary. Observers from S an B can exchange neutral
information in terms of either after simply agreeing on a choice
of “side”.
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5. LORENTZ WORKOUTS

Workout (9)
( xB −ct B )=λ ( xS− ct S ) repeats (6)

( xB+ctB )=μ ( xS+ct S ) repeats (7)

(6) + (7)   2 x S
=( λ+μ ) x B− ( λ − μ ) ctB 

 xS=
( λ+μ )

2
xB −

( λ − μ )

2
ctB 

 xS
=a xB− bct B repeats (9)

Workout  (10)

(6) – (7)   −2ctS
=( λ − μ ) xB − ( λ+μ ) ctB 

 −ctS
=

λ − μ
2

x B−
λ+μ

2
ctB 

 −t S
=b xB −actB  

 t S
=actB− b xB repeats (10)

Workout (11)

(9)(xS=0)   0=axB −bctB 

 v :=
xB

tB =
a
bc

Section 2, requirement I: proportionality under v means that v
should be the same over all measurements (in the line of the
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relative movement of  S and  B,  but this  can be generalized),
hence everywhere equal to the value of  v that we get  if  we
measure it  at  xS=0, as done in the main text.  The procedure
should be symmetric (could just as well start from xB=0)

Workout (24)

xS
=axB −bctB repeats (9)

(9)(18)(20)  
xS=

x B

√1−
v2

c2

− tB c√
1

c2

v2
−1



 
xS

=
x B

√1−
v2

c2

− tB v
c
v √

1
c2

v2
− 1



 
xS

=
x B

√1−
v2

c2

− tB v √
1

v2

c2 ( c2

v2 −1) 


xS

=
x B

√1−
v2

c2

− tB v √
1

1−
v2

c2

 

  
xS

=
xB − vtB

√1−
v2

c2

repeats (24)
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Workout (24)

ctS
=act B −bxB repeats (10)

   t S
=atB−

b
c

xB
(26)

(18)(20)(26)   
t S
=

tB

√1−
v2

c2

−
1
c √

1
c2

v2
−1

xB



  
t S
=

tB

√1−
v2

c2

−
1
c

v
c

c
v √

1
c2

v2
− 1

xB



  
t S
=

tB

√1−
v2

c2

−
v

c2 √
1

v2

c2 ( c2

v2 − 1)
x B



  t S
=

tB

√1−
v2

c2

−

v

c2

√1−
v2

c2

x B


 t S
=

tB −
v

c2
xB

√1−
v2

c2

repeats (25)
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