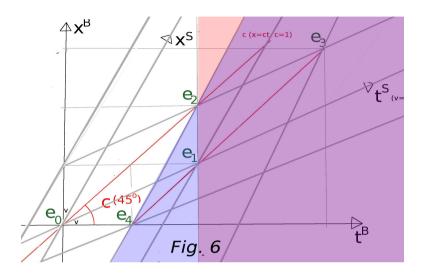
Bert Tells What He Reads



Bert reads Einstein

Special relativity Part 2 (/2): Training the brain: space time diagrams, numerical exercise

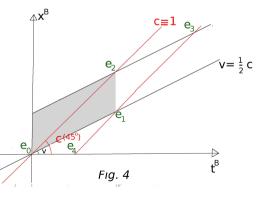
Bert¹ reads Einstein

Part 2 (/2): training the brain: space time diagrams, numerical exercise

6. Building a live neural network for the Lorentz routines

We did it. But now we have to unzip the thing into a smoothly functioning download into the neural network of the live human thinking organ: exercise. We shall now analyse a period of 1200 nanoseconds in which our shuttle *S* passes the space base *B* with half the speed of light. Measured from B, that is. We should call them 1200 *B*-nanoseconds: for *S* will measure the episode of study to last 866 *S*-nanoseconds. Measured from *B*, time as measured by *S* passes 30% slower. *S* measures its own length at 115m. *B* measures *S* to be 100m. B is a regularly round sphere, if measured from *B*, with a diameter of 115 meters. Measured from *S*, *B* is not a sphere but an ellipsoid, a sphere flattened along the line of the relative movement of *S* and *B*. Measured from *S*, perpendicular *B* has circular shape with a diameter of 115m, but in the direction of the line on which *S* moves away from *B*, *S* measures it to be 100 m.

We first plot our data in a relativistic spacetime diagram (*Fig.4*). Event e_0 is that of the rear of the shuttle *S* being at base *B*. The line marked v=1/2cshows how in time (tothe right) the rear moves away from

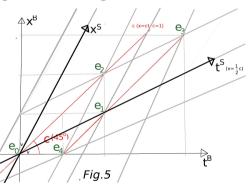


¹ Freeware pdf. This is the "self-summary" of my study. I used Einstein, A., *Uber die spezielle und die allgemeine Relativitätstheorie*, Braunschweig: Vieweg 1956, and Utrecht University's fall 2015 physics and astronomy bachelor's course in special relativity by Prof. Stefan Vandoren. About me: http://asb4.com/aboutme.html

base *B*. At the time of event e_0 , set $t^B=0$ by *B*, the front of the shuttle already is at a positive distance from the origin. According to the *proportionality requirement* under uniform movement the front of the shuttle moves at the same speed as the rear, that is with a constant lead over the rear. This, measured from *B*, defines the greyed band as the full range of points, rear to front, of the shuttle *S* moving away. The grey band should be seen as generated by the line of the shuttle back to front, moving away from *B*.

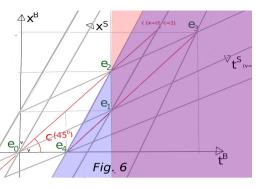
At $t^B=0$ a light pulse generated by *B* starts at the rear of the shuttle, We set c=1. This means that light speed is our speed unit, hence the red line has 45° and is bisector of the grid. Event e_2 is the event of the pulse reaching the front of *S*. The red line from e_0 to e_2 represents all positions of the pulse while overtaking *S*, that is, going from rear to front of *S*. *B* launches a second light pulse, pulse 2 (event e_4), at a time such that it will reach the rear of the shuttle exactly when pulse 1 reaches the front. Event e_1 is that of pulse 2 reaching the back of the shuttle. Event e_3 is that of pulse 2 reaching the front.

In *Fig.* 5 we put an overlay: the shuttle's measurement grid. We draw the grid in which *S* measures time and distance. The line of movement of the rear of S will be used as the *time axis* of *S*. Since in the grid of *S* light



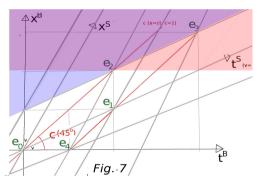
should have speed c=1 as well, the *x*-axis of *S* should be such that the light line cuts through the middle in this grid too: the light line should be the bisector in the *S*-grid just as it is in the *B*-grid. This fixes axis x^{s} in symmetric position. *S* measures space and time according this grid.

Fig. 6 reproduces *Fig.* 5 to show how *B* and *S* read different time-spans. We choose event e_2 for the example. How do *S* and *B* compare the time of other events with that of event e_2 ? From *B*, every event



in the pink and purple area measures later than e_2 . From *S*, every event in the blue and purple area is measured later than e_2 by *S*. So events in the pink area are timed from *B* as happening later than e_2 but from *S* they are timed as happening earlier. For events in the blue area things are the other way around.

reproduces Fia. 7 *Fig.* 5 to show how *B* S and measure distance differences from e₂. From *B* every event *e* in the pink and purple area is measured further away than e_2 . Every event in the blue and



purple area is measured further than e_2 by *S*.

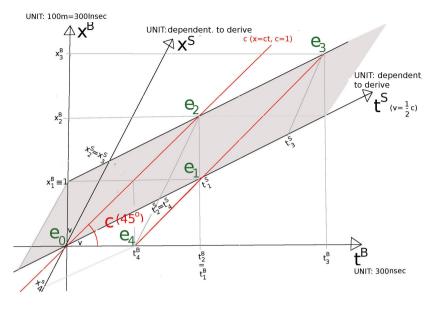
Note this is **not** like the familiar case when at some point in time soccer players *B*, *P*, *Q* and *S* stand in line so from *B*, *Q* is further away than *P* and from *S*, *P* is further away than *Q*. We are doing something completely different: the distance differences in *Fig.* 7 are not depending on the location of *B* and *S* at some point in time, but only on their relative speed *v*. We

do *not* compare *actual positions at some point of time* but we compare the two grids.

It can be read in *Fig.* 5,6,7 that some events are measured by *B* as on the same point in *B*-time: they are *B*-simultaneous or *B*-st ("*B*-same *t*"). Some other events are measured by *B* as on the same *B*-distance. They are *B*-colocal or *B*-sx ("*B*-same *x*"). Similarly there are *S*-simultaneous *S*-st ("*S*-same *t*") and *S*-colocal *S*-sx ("*S*-same *x*") events.

	e ₀	e ₁	e ₂	e ₃	e ₄
e ₀		S-sx			B-sx
e ₁			B-st		
e ₂				S-sx	S-st
e ₃					
e ₄					

Exercize: check this table in *Fig.* 5,6,7:



6. Doing the triangulation in the space-time diagram

Fig. 8

We want to fill the numbers of the following sheet:

Description	Even t	X ^B	t ^B	x ^s	t ^s
rear of <i>S</i> at <i>B</i> ; pulse 1 generated	e ₀	=set 0	=set 0	=set 0	=set 0
pulse 2 at rear of S	<i>e</i> ₁	=set1 (unit)	$=t_2^B$	$=x_0^S$	t_1^{S}
pulse 1 at front <i>of</i> S	<i>e</i> ₂	X_2^B	t_2^B	x_2^{S}	$=t_4^S$
pulse 2 at front <i>of</i> S	<i>e</i> ₃	X_3^B	t_3^B	$=x_{2}^{S}$	$t_4{}^S$
pulse 2 generated	e_4	$=\chi_0^B$	$t_4{}^B$	$t_4{}^S$	$=t_2^S$

Fill stage 1: (fills start with "=", untouched cells have no "=")

1. Fill the 4 origin zeros

2. Fill unit =1 for events with unit x^{B} .

3. Write simultaneity and colocality links (from the table at the end of section 5)

Description	$\begin{array}{c c} Even \\ t \end{array} \qquad \chi^B \end{array}$		t ^B	x ^s	t ^s
rear of <i>S</i> at <i>B</i> ; pulse 1 generated	e ₀	0	0	0	0
pulse 2 at rear of S	e_1	1	$=\chi_2^B$	0	t_1^S
pulse 1 at front <i>of S</i>	<i>e</i> ₂	X_2^B	$=\chi_2^B$	x_2^{S}	$=\chi_2^S$
pulse 2 at front <i>of</i> S	<i>e</i> ₃	X_3^B	t_3^B	$=\chi_2^S$	t_3 ^S
pulse 2 generated	e_4	0	$= \frac{1}{2} t_2^B$	t_4^{S}	$=x_2^s$

Fill Stage 2

4. Numerize the links already working

5. Jump axes over the light line: event e_2 is on the bisector hence $t_2^{B} = x_2^{B}$ Also $x_2^{S} = t_2^{S}$ which yields $x_2^{S} = t_2^{S} = x_3^{S} = t_4^{S}$. We replace the fill of the cells of t_2^{S} and t_4^{S} with " $= x_2^{S}$ ", so now the 4 cells $x_2^{S} = t_2^{S} = x_3^{S} = t_4^{S}$ have circular links. Now if we find the value of one of them, we have the values of all.

6. What *B*-time should *B* choose for launching pulse 2 such that it hits the rear of the shuttle *B*-simultaneous with event e_2 , that of pulse 1 reaching its front? t_4^B should be half of t_2^B . Note that in terms of the S grid, *B* is timing its event e_4 (the second light shot) so as to make it *S*-simultaneous to e_2 .

7: For t_1^B replace $=t_2^B$ with what we now know is equivalent $=x_2^B$. This yields another equivalent group: $t_1^B = t_2^B = x_2^B$

Description	Event	X ^B	t ^B	x ^S	t ^s	
rear of <i>S</i> at <i>B</i> ; pulse 1 generated	e ₀	0	0	0	0	
pulse 2 at rear of S	e_1	1	2	0	$\sqrt{5}$	
pulse 1 at front of S e		2	2	$\frac{2}{3}\sqrt{5}$	$\frac{2}{3}\sqrt{5}$	
$s^{\text{pulse 2 at front of}} s^{\text{pulse 2 at front of}} e_3$		3	4	$\frac{2}{3}\sqrt{5}$	$\frac{5}{3}\sqrt{5}$	
pulse 2 generated e_4		0	1	$-\frac{1}{3}\sqrt{5}$	$\frac{2}{3}\sqrt{5}$	

Fill Stage 3

7. (See *Fig. 8*) find x_2^B : $x_2^B = 2 x_1^B = 2$. This finds the linked t_1^B and t_2^B , both also =2, and the linked t_4^B as half of that: $t_4^B = 1$ 8. (See *Fig. 8*) find $x_3^B = 3$, $t_3^B = 4$

9. Find
$$t_1^{S}$$
: $(t_1^{S})^2 = (x_1^{B})^2 + (t_1^{B})^2 \implies t_1^{S} = \sqrt{5}$

10. Now find x_2^{s} . It is on the intersection two lines: the x^{s} -axis, that is line $x^{B}=2t^{B}$, and the time line of the front of the shuttle:

t^B=2x^B-2. They intersect at
$$(t^{B}, x^{B}) = (\frac{2}{3}, \frac{4}{3})$$

 $x_{2}^{S} = \sqrt{(t^{B})^{2} + (x^{B})^{2}} = \sqrt{(\frac{4}{3})^{2} + (\frac{2}{3})^{2}} = \frac{2}{3}\sqrt{5}$

and we already have $x_2^{S}=t_2^{S}=x_3^{S}=t_4^{S}$, so we set them all =

$$\frac{2}{3}\sqrt{5}$$

11. (See graph symmetries)

$$t_3^{S} = t_2^{S} + t_1^{S} = \sqrt{5} + \frac{2}{3}\sqrt{5} = \frac{5}{3}\sqrt{5}$$

12. Last but not least: x_4^s the *S*-distance at which *B* generates pulse 2 is negative: is on the intersection of the x_2^s -axis, that is the line $x^B=2t^B$, and the line of slope *v* through point e_4 :

$$t^{B}=2x^{B}+1$$
. They intersect at $(t^{B},x^{B})=(-\frac{2}{3}, -\frac{1}{3})$

$$x_{4}^{s} = -\sqrt{(t^{B})^{2} + (x^{B})^{2}} = -\sqrt{(\frac{2}{3})^{2} + (\frac{1}{3})^{2}} = -\frac{1}{3}\sqrt{5}$$

7. Comparing the graph calculations with the Lorentz transformed values.

Now we arrive at the limitations of space time diagrams in understanding space-time. For when we ask ourselves: are all t_i^{S} and x_i^{S} values derived by triangulation from the graph indeed Lorentz- transformed values of their corresponding t_i^{B} and $x_i^{B?}$, the answer is: though we are close, the're not.

Let us do the Lorentz transformation of the S-values based on the *B*-values

First calculate *y* for *c*=1 and $v = \frac{1}{2}$

(23)
$$\gamma := \sqrt{\frac{1}{1 - \frac{v^2}{c^2}}} = \frac{2}{\sqrt{3}}$$
 (27)

then the Lorentz transformation reads:

(24)
$$x^{s} = \gamma (x^{B} - \nu t^{B}) = \frac{2}{\sqrt{3}} x^{B} - \frac{1}{\sqrt{3}} t^{B}$$
 (28)

(25)
$$t^{s} = \gamma \left(t^{B} - \frac{v}{c^{2}} x^{B} \right) = -\frac{1}{\sqrt{3}} x^{B} + \frac{2}{\sqrt{3}} t^{B}$$
(29)

For the events e_i , i=0,...,4, the Lorentz values of (t_i^S, x_i^S) now labelled (t_i^{SL}, x_i^{SL}) then derive from the graph values found for (t_i^B, x_i^B) in the last table. We now put their columns behind our triangulation result columns

Description	Even t	x ^B	t ^B	x ^s	ť	x^{SL}	t ^{SL}
rear of <i>S</i> at <i>B</i> ; pulse 1 generated	e_0	0	0	0	0	0	0
pulse 2 at rear of S	e_1	1	2	0	$\sqrt{5}$	0	$\frac{3}{\sqrt{3}}$
pulse 1 at front <i>of</i> S	e ₂	2	2	$\frac{2}{3}\sqrt{5}$	$\frac{2}{3}\sqrt{5}$	$\frac{2}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}$
pulse 2 at front <i>of</i> S	e ₃	3	4	$\frac{2}{3}\sqrt{5}$	$\frac{5}{3}\sqrt{5}$	$\frac{2}{\sqrt{3}}$	$\frac{5}{\sqrt{3}}$
pulse 2 generated	e ₄	0	1	$-\frac{1}{3}\sqrt{5}$	$\frac{2}{3}\sqrt{5}$	$-\frac{1}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}$

Before this table we only had the orientation of the *S*-grid. And that was all we needed to to see and analyse, from the figures, simultaneity, colocality, and to draw the "earlier/later than e_i in grid *S*/*B*"- type of conclusions. Now we have the *S*-units as well. They do not derive from the graph, and they differ from the *B*-units. You really need the Lorentz transformation.

But there is linear dependence between the *SL*- and the *S*-columns:

$$(c=1)(v=\frac{1}{2}) \Rightarrow \text{For all } i(\frac{x_i^{SL}}{x_i^{S}} = \frac{t_i^{SL}}{t_i^{SL}} = \frac{3}{\sqrt{15}})$$

We have reported the *S*-units "to derive" in *Fig. 8*. Now we have found them and we can put the right rod marks on the *S*-grid. The units of the *S*-grid (the distances between the rod marks on the *S*-grid) are $\frac{3}{\sqrt{15}}$ or about 77% of the graph-length of the units of the *B*-grid. Or, saying it in inversed

mode: under $(c=1)(v=\frac{1}{2})$, triangulation from a unit B=1 creates a *S*-grid that, in graph length, is $\frac{3}{\sqrt{15}}$ or about 30% too wide. The degree of *S*-grid compression (or, what you could do equally well, *B*-grid enlargement) that you require to be able to read actual values from the *S*-axes is a function of *c* and *v*.

This should cure the headache of who felt that in the graph *Fig.* 8 the shuttle's greater length in its own grid ("rest length") is of a bit of a startling proportion. Our conclusions concerning simultaneity, colocality, "earlier/later than e_i in grid *S*/*B*" are unaffected by shifting the *S*-grid lines to their Lorentz-width: all event points and lines stay where they are. It is just that the absolute *S*-grid *values* cannot be derived graphically (i.e. by triangulation).

Counting the *S*-axes' brand new Lorentz rod marks, 30% nearer to each other than those on the *B*-axes if we keep the *B*-grid rod marks unchanged), you'll find that

Shuttle *B*-length: $x_1^B=100m=300$ lnsec Shuttle *S*-length ("rest-length"):

$$x_2^{SL} = \frac{2}{\sqrt{3}} = 115.05 \text{m} = 377 \text{lnsec}$$

So from *B*, the shuttle at home measures (now a more modest 15.5%) shorter than from *S*.

For time we find values like:

B-time of end-of-this-study event
$$e_3$$
:
 $t_3^B = 4 \times 300$ nsec=1200nsec
S-time of end-of-this-study event e_3 :
 $x_3^{SL} = \frac{5}{\sqrt{3}}$ nsec=2.887x300nsec=866nsec

Compared to *B*, *S*-time has gone quite a bit slower (72% of the pace of *B*'s time). Stunning, but then, travelling half light speed is a performance we can only dream of.

8. The symmetry of symmetry

In our exercise we transformed *S*-values, treating the *B*-values as given. Let us call a Lorentz transformation as we did, starting from *B*: L^B . The Lorentz transformation using *S*-values as given and deriving transformed *B*-values we call L^S . Symmetry (section 2) requires identical outcomes of L^B and L^S . Hard to doubt, for we simply swap the suffixes *B* and *S* everywhere. But it doubles the number of types of seconds and meters we have to distinguish: as meters we now we have four types: the SL^B meter and BL^B meter, the ones we numerized in our exercise, and the SL^S meter and BL^S meter.

Symmetry requires: 100*B*L^{*B*}m=100*S*L^{*S*}m=115.5*S*L^{*B*}m=115.5*B*L^{*S*}m and, similarly 1200*B*L^{*B*}nsec=1200*S*L^{*S*}nsec=866*S*L^{*B*}nsec=866*B*L^{*S*}nsec

